BackgroundExpressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut).ResultsA catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher.ConclusionWe have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance.
Simple sequence repeat (SSR) markers from Quercus and Castanea were used for comparative mapping between Quercus robur (L.) and Castanea sativa (Mill.). We tested the transferability of SSRs developed in Quercus to Castanea and vice-versa. In total, 47% (25) of the Quercus SSRs and 63% (19) of the Castanea SSRs showed a strong amplification product in the non-source species. From these 44 putative comparative anchor tags, 19 (15 from Quercus and 4 from Castanea) were integrated in two previously established genetic linkage maps for the two genera. SSR loci were sequenced to confirm the orthology of the markers. The combined information from both genetic mapping and sequence analysis were used to determine the homeology between seven linkage groups, aligned on the basis of pairs or triplets of common markers, while two additional groups were matched using a single microsatellite marker. Orthologous loci identified between Q. robur and C. sativa will be useful as anchor loci for comparative mapping studies within the Fagaceae family.
The inferred population structure shows a strong geographical correspondence with the hypothesized glacial refugia and rules out the migration of the chestnut from Turkey and Greece to Italy. The homogeneous gene pool observed in Italy and Spain could have been originated from common refugia along with human-mediated colonization.
The distribution of haplotypic diversity of 38 European chestnut (Castanea sativa Mill.) populations was investigated by PCR/RFLP analysis of regions of the chloroplast and mitochondrial genomes in order to shed light on the history of this heavily managed species. The rapid expansion of chestnut starting from 3000 years ago is strongly related to human activities such as agricultural practice. This demonstrates the importance of human impact, which lasted some thousands of years, on the present-day distribution of the species. No polymorphism was detected for the single mitochondrial analysed region, while a total of 11 different chloroplast (cp) haplotypes were scored. The distribution of the cpDNA haplotypes revealed low geographical structure of the genetic diversity. The value of population subdivision, as measured by GSTc, is strikingly lower than in the other species of the family Fagaceae investigated. The actual distribution of haplotypic diversity may be explained by the strong human impact on this species, particularly during the Roman civilization of the continent, and to the long period of cultivation experienced during the last thousand years.
A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers was constructed using the two-way pseudo-testcross strategy. A total of 96 individuals from a F 1 full-sib family was genotyped with 381 molecular markers (311 RAPDs, 65 ISSRs, 5 isozymes). Markers in testcross configuration, segregating 1:1, were used to establish two separate maternal and paternal maps including 187 and 148 markers, respectively. The markers identified 12 linkage groups based on the haploid number of chestnut. The female and male framework maps reached a total length of 720 and 721 cM (Kosambi), respectively, representing a 76% and 68% coverage of the overall genome. A total of 46 markers, found in intercross configuration, segregating 3:1 and 1:2:1, were used to identify homologous linkage groups between parental maps; out of 12 linkage groups 11 could be joined. RAPD and ISSR markers showed a good and comparable reliability, allowing for the first time the establishment of a saturated linkage map for European chestnut. These maps will be a starting point for studies on the structure, evolution and function of the chestnut genome. Identification of QTLs for adaptive traits in chestnut will be the primary target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.