Energy efficiency drives the development of more and more complex low-power designs. Based on dynamic power management techniques, multiple voltage islands as well as a huge amount of power states are specified that have to be tested carefully. In this context, low-power design should start at an early stage using state-of-the-art system-level modeling and simulation techniques. However, there is neither a programming language nor any modeling standard that reflects variable power together with its functional side effects in a well-suited abstract manner. To overcome this limitation, we present a modeling approach on top of SystemC TLM to capture low-power design characteristics at electronic system-level. We demonstrate the usability by means of an existing open-source low-power design. The experimental results show that appropriate TLM instrumentation cause only minimal simulation overhead, but offer sufficient details to identify common low-power design errors.
Faced with increasing demands on energy efficiency, current electronic systems operate according to complex power management schemes including more and more fine-grained voltage frequency scaling and power shutdown scenarios. Consequently, validation of the power design intent should begin as early as possible at electronic system-level (ESL) together with first executable system specifications for integrity tests. However, today's system-level design methodologies usually focus on the abstraction of digital logic and time, so that typical low-power aspects cannot be considered so far.In this paper, we present a high-level modeling approach on top of the SystemC/TLM standard to simulate power distribution and voltage based implications in a "loosely-timed" functional execution context. The approach reuses legacy TLM models and prevents the need for detailed lock-step process synchronization in contrast to existing methods. A case study derived from an open source low-power design demonstrates the efficiency of our approach in terms of simulation performance and testability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.