Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level—TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings from the high-fidelity aero-numerical simulation and aerodynamic validation testing, i.e., the overall aircraft wind tunnel and the BLI fan rig test campaigns, are discussed. The design results for the architectural concept, systems integration and electric machinery pre-design for the fuselage fan turbo-electric power train are summarized. The design and performance implications on the main power plants are analyzed. Conceptual design solutions for the mechanical and aero-structural integration of the BLI propulsive device are introduced. Key heuristics deduced for PFC conceptual aircraft design are presented. Assessments of fuel burn, NOx emissions, and noise are presented for the PFC aircraft and benchmarked against advanced conventional technology for an entry-into-service in 2035. The PFC design mission fuel benefit based on 2D optimized PFC aero-shaping is 4.7%.
SARISTU morphing wing is mainly based on three devices: enhanced adaptive droop nose (EADN), adaptive trailing edge device (ATED) and winglet active trailing edge (WATE). All these devices are used together to improve the overall wing efficiency and to reduce the aerodynamic noise. The safety activities described in this paper were performed to verify whether this concept can comply with the standard civil flight safety regulations and airworthiness requirements. The safety analysis was performed in two steps: a functional hazard assessment (FHA) and a system safety assessment (SSA). Both analyses were performed at wing integration level (IS12) and at single morphing wing devices level. A complete mapping between these two levels of analysis was structured from the beginning of the process, starting from the aircraft functional definition, to integrate and harmonize both FHA and fault trees results. FHA was used to assess the severity of the identified Failure Conditions and then allocate safety requirements. Fault tree modelling technique was used to verify the compliance of the system architectures to the quantitative safety requirements resulting from the FHAs. The paper sets out the hypotheses and common data used by the fault trees. A complete but simple example illustrates the safety approach all through the different steps of the safety methodology. Other safety activities commonly performed in the aeronautical field such as the particular risk analysis (PRA), common mode analysis (CMA) and zonal safety analysis (ZSA) were identified in the frame of SARISTU project. This paper concludes with a summary highlighting the main results of these safety activities with some lessons learned from the safety approach adapted to SARISTU context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.