An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes (Vulpes vulpes), Eurasian badgers (Meles meles), stone (Martes foina) and pine (Martes martes) martens, from a Eurasian lynx (Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination-the classic presentation of CDV infection-was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.
BackgroundGastrointestinal nematode (GIN) infections are common in domestic sheep and impact directly and indirectly on the health of infected animals as well as on the associated economic production. In this study, we aim at summarizing the current knowledge on the influence of GIN infections on sheep production by conducting a systematic review. A subsequent meta-analysis of relevant studies was performed to provide an estimate of the effect of GIN infections on weight gain, wool production and milk yield.MethodsA literature search was performed on the CAB, Pubmed and Web of Science database for the period 1960–2012. Inclusion criteria were: 1) Measurement of at least one production parameter. 2) Comparison between groups of sheep with different nematode burdens. 3) Same conditions regarding all aspects except parasite burden between groups. 4) Quantitative measurements of one or more production traits.ResultsAltogether, 88 studies describing 218 trials were included in this review. The majority of studies (86 %) reported that GIN infections had a negative effect on production but this was reported to be statistically significant in only 43 % of the studies. Meta-analysis indicated that performances of sheep infected with nematodes was 85, 90 and 78 % of the performance in uninfected individuals for weight gain, wool production and milk yield respectively. Our results suggest a possible reporting bias or small study effect for the estimation of the impact of GIN infections on weight gain. Finally, a general linear model provided an estimate for the decrease in weight gain in relation to the increase in faecal egg count of nematodes.ConclusionThis study underlines the importance of GIN infections for sheep production and highlights the need to improve parasite management in sheep, in particular in face of challenges such as anthelmintic resistance.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-1164-z) contains supplementary material, which is available to authorized users.
Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although paleontological history demonstrates adaptability within limits. We discuss status and limitations of current monitoring, and summarize circumpolar status and recent variations, delineating all 55 endemic or translocated populations. Acknowledging uncertainties, global abundance is ca 170 000 muskoxen. Not all populations are thriving. Six populations are in decline, and as recently as the turn of the century, one of these was the largest population in the world, equaling ca 41% of today's total abundance. Climate, diseases, and anthropogenic changes are likely the principal drivers of muskox population change and result in multiple stressors that vary temporally and spatially. Impacts to muskoxen are precipitated by habitat loss/degradation, altered vegetation and species associations, pollution, and harvest. Which elements are relevant for a specific population will vary, as will their cumulative interactions. Our summaries highlight the importance of harmonizing existing data, intensifying long-term monitoring efforts including demographics and health assessments, standardizing and implementing monitoring protocols, and increasing stakeholder engagement/contributions.
Mycoplasma conjunctivae, the causative agent of infectious keratoconjunctivitis (IKC), was recently detected in asymptomatic Alpine ibex (Capra ibex ibex). This suggested that an external source of infection may not be required for an IKC outbreak in wildlife but might be initiated by healthy carriers, which contradicted previous serologic investigations in chamois. Our aims were to 1) assess the prevalence of M. conjunctivae among asymptomatic ibex and Alpine chamois (Rupicapra rupicapra rupicapra) and its frequency in IKC-affected animals, 2) determine mycoplasma loads in different disease stages, and 3) characterize the M. conjunctivae strains involved. Eye swabs from 654 asymptomatic and 204 symptomatic animals were collected in diverse Swiss regions between 2008 and 2010, and tested by TaqMan real-time PCR. Data analysis was performed considering various patterns of IKC occurrence in the respective sampling regions. Strains from 24 animals were compared by cluster analysis. Prevalence of M. conjunctivae was 5.6% (95% confidence interval [CI]: 3.7-8.1%) in asymptomatic ibex and 5.8% (CI: 3.0-9.9%) in asymptomatic chamois, with significant differences between years and regions in both species. Detection frequency in symptomatic animals was significantly higher during IKC outbreaks than in nonepidemic situations (i.e., regular but low incidence or sporadic occurrence). Mycoplasma load was significantly lower in eyes from healthy carriers and animals with mild signs than from animals with moderate and severe signs. Although some strains were found in both asymptomatic and diseased animals of the same species, others apparently differed in their pathogenic potential depending on the infected species. Overall, we found a widespread occurrence of M. conjunctivae in wild Caprinae with and without IKC signs. Our results confirm the central role of M. conjunctivae in outbreaks but suggest that other infectious agents may be involved in IKC cases in nonepidemic situations. Additionally, presence and severity of signs are related to the quantity of M. conjunctivae in the eyes rather than to the strain. We propose that individual or environmental factors influence the clinical expression of the disease and that persistence of M. conjunctivae in populations of wild Caprinae cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.