Genetic diversity in tropical rhizobial species is still poorly known. With the aim of increasing this knowledge, three ribosomal regions of 119 strains belonging to the official Brazilian culture collection of rhizobia and classified as Bradyrhizobium based on morphological and physiological characteristics in vitro were analysed by RFLP-PCR. The strains were isolated from 33 legume species, representing nine tribes and all three subfamilies; they all form very effective N 2 -fixing nodules and 43 of them are recommended for use in Brazilian commercial inoculants as the most effective for their hosts. For the 16S rRNA gene, type and reference strains of Bradyrhizobium japonicum fell into two major clusters, joined at a level of similarity of 50 %, which included 52 strains, 90 % of which were isolated from soybean. Two other clusters, joined at a similarity of 53 %, included reference strains of Bradyrhizobium elkanii, but not USDA 76 T ; furthermore, two other major clusters were identified and all strains were clustered at a final level of similarity of only 28 %. For the intergenic spacer (IGS) between genes coding for the 16S and 23S rRNA, strains were clustered at a final level of similarity of 27 %. Reference strains of B. japonicum fell into a major group with 51 strains, 84 % isolated from soybean, with a similarity of 59 %, while strains of B. elkanii fell into another major group, with a similarity of 55 %, clustering 44 strains, 59 % of which were isolated from hosts other than soybean. New clusters were also observed for the IGS region. The largest number of differences was detected in the analysis of the 23S rRNA gene, and 16 groups and isolated strains were joined at a very low level of similarity (16 %). In a combined analysis with the three ribosomal regions, the majority of strains isolated from soybean clustered with a similarity of 54 % with type and reference strains of B. japonicum, while most strains isolated from Brazilian indigenous legume species grouped with B. elkanii at a level of similarity of 46 %. All strains were clustered at a very low level of similarity (27 %), and at least two new clusters were clearly defined. These new clusters might be related to intraspecific differences or to novel subspecies, or even to novel species; indeed, strains from one of these clusters show higher 16S rRNA gene sequence similarity to members of the genus Burkholderia. The results obtained in this study emphasize the high level of diversity of symbiotic diazotrophic bacteria in the tropics that still remains to be determined. INTRODUCTIONThe Leguminosae (known as the Fabaceae in the USA) is one of the largest families of plants, with over 18 000 species classified into around 650 genera, representing approximately one-twelfth of all known flowering plants and occupying nearly all terrestrial biomes (Polhill & Raven, 1981). Many species within this family are capable of establishing symbioses with a group of bacteria collectively called rhizobia, of which the most important feature is the capacity...
Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P. stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary.
SUMMARYSoybean is a major grain crop in Brazil, and yields can be considerably improved by inoculation with selected Bradyrhizobium strains. However, the incompatibility between inoculation and seed treatments with fungicides and micronutrients represents a major barrier to the achievement of high rates of biological N 2 fixation. Inoculation practices that can alleviate the negative effects of agrochemicals must therefore be found and in-furrow inoculation seems to be an attractive alternative. This study reports the results of seven field experiments conducted in three growing seasons in Brazil; three in soils previously cropped with inoculated soybean (> 10 4 cells g -1 of soil of Bradyrhizobium), and four in areas where the crop was sown for the first time (< 10 2 cells g -1 of soil of Bradyrhizobium). The compatibility with fungicides and micronutrients was compared in seeds inoculated with peat or liquid inoculants, or treated with different doses of liquid inoculant in-furrow. In areas with established Bradyrhizobium populations, seed-applied agrochemicals did generally not affect nodulation, but also did not increase yields, while inoculation always increased N grain accumulation or yield, and N fertilizer decreased both nodulation and yield. Where soybean was sown for the first time, the seed treatment with agrochemicals affected nodulation when applied together with peat or liquid inoculant. In-furrow inoculation alleviated the effects of seed treatment with agrochemicals; the best performance was achieved with high Bradyrhizobium cell concentrations, with up to 2.5 million cells seed -1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.