The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
BackgroundRhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown.ResultsGenome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins.ConclusionsAvailability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) Ϸ500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.T he genomes of soil-and water-borne free-living bacteria have received relatively little attention thus far in comparison to pathogenic and extremophilic organisms, yet they provide fundamental insights into environmental adaptation strategies and represent a rich source of genes with biotechnological potential and medical utility. A particularly interesting organism of this kind is Chromobacterium violaceum, a Gram-negative -proteobacterium first described at the end of the 19th century (1), which dominates a variety of ecosystems in tropical and subtropical regions. This bacterium has been found to be highly abundant in the water and borders of the Negro river, a major component of the Brazilian Amazon (2) and as a result has been studied in Brazil over the last three decades. These, in general, have focused on the most notable product of the bacterium, the violacein pigment, which has already been introduced as a therapeutic compound for dermatological purposes (3). Violacein also exhibits antimicrobial activity against the important tropical pathogens Mycobacterium tuberculosis (4), Trypanosoma cruzi (5), and Leishmania sp. (6) and is reported to have other bactericidal (2, 7-10), antiviral (11), and anticancer (12, 13) activities.Some other aspects of the biotechnological potential of C. violaceum have also begun to be explored, including the synthesis of poly(3-hydroxyvaleric acid) homopolyester and other shortchain polyhydroxyalkanoates, which might represent alternatives to plastics derived from petrochemicals (14, 15), the hydrolysis of plastic films (16), and the solubilization of gold through a mercury-free process, thereby avoiding environmental contamination (17, 18). These studies, however, have been based on knowledge of only a tiny fraction of the genetic constitution of the organism. In addition, the more basic issues of the mechanisms and strategies underlying the adaptability of C. violaceum, including its observed but infrequent infection of h...
Aims: To isolate and to characterize the diversity of Chromobacterium violaceum from the Brazilian Amazon region. Methods and Results: Twenty-two isolates were obtained from the waters and banks of the river Negro, in the Brazilian Amazon. All isolates were able to grow in vitro at 44°C and pH 4AE0, but were adversely affected by temperatures below 15°C, and unable to survive at 4°C, properties that may be related to the adaptation to the ecosystem. The isolates were joined at a final level of similarity of only 13% in the rep-PCR analysis. The analysis of 16S rRNA genes resulted in three main groups clustered at a final level of similarity of 97% and only three isolates were clustered with the type strain. Similar data were obtained for the 23S rRNA gene. Conclusions: A high level of genetic diversity was verified with indications that the Brazilian isolates would fit into at least two new clusters besides C. violaceum species. Significance and Impact of the Study: The results show remarkable bacterial adaptability and genetic diversity of C. violaceum in the Amazon region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.