Abstract-There is an accumulating evidence that driver's distraction is a leading cause of vehicle crashes and incidents. In particular, it has become an important and growing safety concern with the increasing use of the so-called In-Vehicle Information Systems (IVIS) and Partially Autonomous Driving Assistance Systems (PADAS). Thereby, the detection of the driver status is of paramount importance, in order to adapt IVIS and PADAS accordingly, so avoiding or mitigating their possible negative effects. The purpose of this paper is to illustrate a method for the non-intrusive and real-time detection of visual distraction, based on vehicle dynamics data and without using the eye-tracker data as inputs to classifiers. Specifically, we present and compare different models, based on well-known Machine Learning methods. Data for training the models were collected using a static driving simulator, with real human subjects performing a specific secondary task (SURT) while driving. Different training methods, model characteristics and feature selection criteria have been compared. Based on our results, SVM has outperformed all the other ML methods, providing the highest classification rate for most of the subjects. Potential applications of this research include the design of adaptive IVIS and of "smarter" PADAS.Index Terms -Accident prevention; artificial intelligence and machine learning; driver' distraction and inattention; intelligent supporting systems.
Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static and kinematic obstacles, pedestrians are active agents with complex, interactive motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behaviour as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from lowlevel image detection to high-level psychological models. This selfcontained Part II covers the higher levels of this stack, consisting of models of pedestrian behaviour, from prediction of individual pedestrians' likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behaviour, high-level psychological and social modelling of pedestrian behaviour still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behaviour, but much work is still needed to translate them into quantitative algorithms for practical AV control.
This position paper introduces the concept of artificial "co-drivers" as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human-robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.