Cyanocobalamin (B(12)) offers a biocompatible scaffold for CO-releasing 17-electron dicarbonyl complexes based on the cis-trans-[Re(II)(CO)(2)Br(2)](0) core. A Co-C≡N-Re conjugate is produced in a short time and high yield from the reaction of [Et(4)N](2)[Re(II)Br(4)(CO)(2)] (ReCORM-1) with B(12). The B(12)-Re(II)(CO)(2) derivatives show a number of features which make them pharmaceutically acceptable CO-releasing molecules (CORMs). These cobalamin conjugates are characterized by an improved stability in aqueous aerobic media over the metal complex alone, and afford effective therapeutic protection against ischemia-reperfusion injury in cultured cardiomyocytes. The non-toxicity (at μM concentrations) of the resulting metal fragment after CO release is attributed to the oxidation of the metal and formation in solution of the ReO(4)(-) anion, which is among the least toxic of all of the rare inorganic compounds. Theoretical and experimental studies aimed at elucidating the aqueous chemistry of ReCORM-1 are also described.
Since the discovery that CO acts as a cytoprotective and homeostatic molecule, increasing research efforts have been devoted to the exploitation of its therapeutic effects. Both endogenous and exogenous CO improves experimental lung, vascular and cardiac injuries and protects against several inflammatory states. The technology is now in place to bring CO to clinical applications, but the use of the gaseous molecule poses several problems. The challenges associated with the clinical implementation of the gas have in part been answered by the development of CO-releasing molecules (CO-RMs). As stable solid forms of CO, these molecules represent an alternative to the administration of carbon monoxide (orally or by injection). In this article, we present insights into the biochemical action of CO and discuss the efficacy of CO and CO-RMs in preclinical disease models. Recent advances in the CO-RMs field are critically addressed.
The carbon monoxide (CO) releasing properties of a series of rhenium(II)-based complexes of general formula cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) and cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (where L = monodentate and N[intersection]N = bidentate ligand) are reported. Complexes evaluated in this study were obtained from direct ligand substitution reactions of the cis-[Re(II)(CO)(2)Br(4)](2-) synthon (2) recently described. (1) All molecules have been fully characterized. The solid-state structures of the cis-trans-[Re(II)(CO)(2)Br(2)L(2)] (with L = N-methylimidazole (3), benzimidazole (4) and 4-picoline (5)) and the cis-trans-[Re(II)(CO)(2)Br(2)N[intersection]N] (with N[intersection]N = 4,4'-dimethyl-2,2'-bipyridine (8) and 2,2'-dipyridylamine (11)) adducts are presented. The release of CO from the cis-trans-[Re(II)(CO)(2)Br(2)L(2)](n) complexes was assessed spectrophotometrically by measuring the conversion of deoxymyoglobin (Mb) to carbonmonoxy myoglobin (MbCO). Only compounds bearing monodentate ligands were found to liberate CO. The rate of CO release was found to be pH dependent with half-lives (t(1/2)) under physiological conditions (25 degrees C, 0.1 M phosphate buffer, and pH 7.4) varying from ca. 6-43 min. At lower pH values, the time required to fully saturate Mb with CO liberated from the metal complexes gradually decreased. Complex 2 and the cis-trans-[Re(II)(CO)(2)Br(2)(Im)(2)] adduct (with Im = imidazole (6)) show a protective action against "ischemia-reperfusion" stress of neonatal rat ventricular cardiomyocytes in culture.
Carbon monoxide releasing molecules (CORMs) are an emerging class of pharmaceutical compounds currently evaluated in several preclinical disease models. There is general consensus that the therapeutic effects elicited by the molecules may be directly ascribed to the biological function of the released CO. It remains unclear, however, if cellular internalization of CORMs is a critical event in their therapeutic action. To address the problem of cellular delivery, we have devised a general strategy which entails conjugation of a CO-releasing molecule (here a photoactivated CORM) to the 5'-OH ribose group of vitamin B12. Cyanocobalamin (B12) functions as the biocompatible water-soluble scaffold which actively transports the CORM against a concentration gradient into the cells. The uptake and cellular distribution of this B12-photoCORM conjugate is demonstrated via synchrotron FTIR spectromicroscopy measurements on living cells. Intracellular photoinduced CO release prevents fibroblasts from dying under conditions of hypoxia and metabolic depletion, conditions that may occur in vivo during insufficient blood supply to oxygen-sensitive tissues such as the heart or brain.
We have synthesized and fully characterized four new complexes comprising the fac-[Re(CO)3]+ moiety and the ligands NH3, L-proline (Pro), or N,N-dimethylglycine (dmGly). The reaction of [Re(H2O)3(CO)3]+ with the two amino acids gives trinuclear complexes of general formula [Re(L)(CO)3]3 (where L = amino acid). We have studied the in vitro behavior of these compounds with guanine and DNA in order to understand whether the cytotoxicity exhibited by certain rhenium complexes based on the fac-[Re(CO)3]+ core is due to the formation of nucleobase complexes and inter- or intrastrand links between DNA bases. We have performed model studies with guanine and studied the structural effects induced by different rhenium(I) tricarbonyl complexes on PhiX174 plasmid DNA by electrophoretic methods. Our results show that rhenium complexes with two available coordination sites interact with plasmid DNA to form a stable adduct that is likely to involve two bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.