An online GPRS-Sensors Array for air pollution monitoring has been designed, implemented, and tested. The proposed system consists of a Mobile Data-Acquisition Unit (Mobile-DAQ) and a fixed Internet-Enabled Pollution Monitoring Server (Pollution-Server). The Mobile-DAQ unit integrates a single-chip microcontroller, air pollution sensors array, a General Packet Radio Service Modem (GPRS-Modem), and a Global Positioning System Module (GPS-Module). The Pollution-Server is a high-end personal computer application server with Internet connectivity. The Mobile-DAQ unit gathers air pollutants levels (CO, NO2, and SO2), and packs them in a frame with the GPS physical location, time, and date. The frame is subsequently uploaded to the GPRS-Modem and transmitted to the Pollution-Server via the public mobile network. A database server is attached to the Pollution-Server for storing the pollutants level for further usage by various clients such as environment protection agencies, vehicles registration authorities, and tourist and insurance companies. The Pollution-Server is interfaced to Google Maps to display real-time pollutants levels and locations in large metropolitan areas. The system was successfully tested in the city of Sharjah, UAE. The system reports real-time pollutants level and their location on a 24-h/7-day basis.Index Terms-Air pollution, general positioning systems (GPSs), microcontrollers embedded systems, wireless mobile networks.
Abstract-This paper describes a method of implementing two factor authentication using mobile phones. The proposed method guarantees that authenticating to services, such as online banking or ATM machines, is done in a very secure manner. The proposed system involves using a mobile phone as a software token for One Time Password generation. The generated One Time Password is valid for only a short userdefined period of time and is generated by factors that are unique to both, the user and the mobile device itself. Additionally, an SMS-based mechanism is implemented as both a backup mechanism for retrieving the password and as a possible mean of synchronization. The proposed method has been implemented and tested. Initial results show the success of the proposed method.
Research in algorithms for Boolean satisfiability (SAT) and their implementations [45,41,10] has recently outpaced benchmarking efforts. Most of the classic DIMACS benchmarks [21] can now be solved in seconds on commodity PCs. More recent benchmarks [54] take longer to solve due of their large size, but are still solved in minutes. Yet, small and difficult SAT instances must exist if P NP. To this end, our work articulates SAT instances that are unusually difficult for their size, including satisfiable instances derived from Very Large Scale Integration (VLSI) routing problems. With an efficient implementation to solve the graph automorphism problem [39,50,51], we show that in structured SAT instances difficulty may be associated with large numbers of symmetries.We point out that a previously published symmetry-detection mechanism [18] based on a reduction to the graph automorphism problem often produces many spurious symmetries. Our work contributes two new reductions to graph automorphism, which detect all correct symmetries detected previously [18] as well as phase-shift symmetries not detected earlier. The correctness of our reductions is rigorously proven, and they are evaluated empirically.We also formulate an improved construction of symmetry-breaking clauses in terms of permutation cycles and propose to use only generators of symmetries in this process. These ideas are implemented in a fully automated flow that first detects symmetries in a given SAT instance, pre-processes it by adding symmetry-breaking clauses and then calls a state-of-the-art backtrack SAT solver. Significant speed-ups are shown on many benchmarks versus direct application of the solver.In an attempt to further improve the practicality of our approach, we propose a scheme for fast "opportunistic" symmetry detection and also show that considerations of symmetry may lead to more efficient reductions to SAT in the VLSI routing domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.