Abstract-This paper presents a novel method for classifying four different levels of cognitive workload. The workload levels are generated using visual stimuli degradation. EEG signals recorded from 16 subjects were used for workload classification. The proposed solution includes preprocessing of EEG signals and feature extraction based on statistical features. This is followed by variable selection using stepwise regression and multiclass linear classification. The presented method achieved an average classification accuracy of 93.4%. The effect of EEG channel selection on the classification accuracy is also investigated. In comparison to the existing work, we show that the proposed solution is more accurate and computationally less demanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.