Ultraviolet radiation is a major risk factor for human skin damage, especially solar ultraviolet-B (UVB) which can induce inflammation, photoaging, and skin cancer. Quercetin (Qu), one of flavonoid family members, has showed protective effects against UVB radiation. However, its application for topical use is limited by low hydrophilicity and poor percutaneous absorption. Herein, we found that Qu, if entrapped into TPP-Chitosan nanoparticles (TCs), can be efficiently uptake by HaCaT cells and easily permeate through the epidermis layer, meanwhile display better stability and low cytotoxicity. We also found that Qu-loaded TCs (QTCs) could notably enhance the effect of Qu on inhibiting the NF-kB/COX-2 signaling pathway as well as ameliorating the skin edema caused by UVB radiation. Therefore, this study provided a method to get rid of Qu’s low hydrophilicity, enhance its percutaneous absorption and retention in the skin, and further improve its anti-UVB effect, and demonstrated that Qu-loaded chitosan nanoparticles can be used as the therapeutic agent for topical use against UVB radiation.
Abstract. Poorly water-soluble drugs such as cefpodoxime proxetil (400 μg/ml) offer a challenging problem in drug formulation as poor solubility is generally associated with poor dissolution characteristics and thus poor oral bioavailability. According to these characteristics, preparation of cefpodoxime proxetil microparticle has been achieved using high-speed homogenization. Polymers (methylcellulose, sodium alginate, and chitosan) were precipitated on the surface of cefpodoxime proxetil using sodium citrate and calcium chloride as salting-out agents. The pure drug and the prepared microparticles with different concentrations of polymer (0.05-1.0%) were characterized in terms of solubility, drug content, particle size, thermal behavior (differential scanning calorimeter), surface morphology (scanning electron microscopy), in vitro drug release, and stability studies. The in vivo performance was assessed by pharmacokinetic study. The dissolution studies demonstrate a marked increase in the dissolution rate in comparison with pure drug. The considerable improvement in the dissolution rate of cefpodoxime proxetil from optimized microparticle was attributed to the wetting effect of polymers, altered surface morphology, and micronization of drug particles. The optimized microparticles exhibited excellent stability on storage at accelerated condition. The in vivo studies revealed that the optimized formulations provided improved pharmacokinetic parameter in rats as compared with pure drug. The particle size of drug was drastically reduced during formulation process of microparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.