Industrial Internet of Things is becoming one of the fundamental technologies with the potential to be widely used in shipyards as in other industries to increase information visibility. This article aims to analyze how to develop an industrial IoT-enabled system that provides visibility and tracking of assets at SEDEF Shipyard, which is in the digital transformation process. The research made use of data from previous studies and by using content analysis, the findings were discussed. Industrial IoT enables the collection and analysis of data for more informed decisions. Based on the findings, sensor data in the shipyard are transmitted to the cloud via connected networks. These data are analysed and combined with other information and presented to the stakeholders. Industrial IoT enables this data flow and monitors processes remotely and gives the ability to quickly change plans as needed. Keywords: Shipyard, Industrial Internet of Things, Cyber-Physical System, Visibility, Assets tracking;
Purpose: In the last few decades, there has been an increasing growth in research into the use of positioning technologies in open environments. Most of the technologies developed for outdoor environments are used successfully, however, they cannot be considered as fully successful indoors. In this context, various technologies based on Radio Frequency, Infrared, Ultrasound, Magnetic, Optical, and computer vision are proposed to improve positioning indoors. In addition to their individual use, it is also seen in hybrid applications. In particular, Radio Frequency based technologies have potential use in shipyard environments. For this purpose, technologies such as Bluetooth, Ultra broadband, Wireless Sensor Network, Wireless Local Area Network, Radio Frequency Recognition and Near Field Communication are seen as suitable technology options for shipyards. The indoor positioning system is a technology that has the potential to significantly improve work efficiency and safety in the shipyard area. It is difficult to achieve a successful digital transformation of the complex shipyard environment without identifying an Indoor positioning technology for the shipyard. In this study, it is aimed to design a positioning technology that will be most appropriate for the shipyard. Methodology: This paper analyses the challenges for the selection of Indoor positioning system for shipyards in evaluating Indoor-positioning technologies. The methodology followed in this study is a comprehensive comparative analysis of existing IPS technologies on how to digitize shipyards. This article provides an advanced assessment of indoor positioning technologies and their use in the challenging shipyard site. In this context, it provides an evaluation framework for different positioning measures such as accuracy, coverage, scalability, cost, privacy and usability of technologies that can be used within the scope of IPS. Results: The work carried out here on indoor positioning systems and components makes a significant contribution to the shipyard industry. Because it has a great impact on the suitability of technologies, especially in relation to the shipyard environment. Both the evaluation model and solution method, and the Bluetooth-based positioning technology, which stands out at the end of the evaluation, are important contributions of the study. Conclusion: To determine which indoor positioning systems are more suitable for the shipyard environment, both a detailed analysis of the shipyard environment and an evaluation were made to select the most suitable technology. The comparison was made based on observations of the shipyard site and the available literature on the field. This article makes important contributions to future shipyards' application of positioning technologies.
Shipyards often face unique challenges, as the construction of ships takes months or even years to complete. As in any sector, Industry 4.0 (I4.0) also affects the shipbuilding sector. With this digital transformation, it aims to meet the challenges of shipbuilding more personalized ships with shorter delivery times, greater flexibility, and higher quality. Therefore, this study aims to review IIoT technologies that will perform the digital transformation in the shipyard. In this study, an analysis of the digital transformation for the shipyard industry of Turkey in general was made and more specifically focused on how to implement IIoT for Sedef Shipbuilding Inc., which is one of the leading shipbuilding companies in Turkey. This study contributes to digital transformation technologies that can be applied in shipyards by providing analysis of existing reference frames for IIoT technologies in shipyard digital transformation. Keywords: ; IoT Ecosystem; IIoT Architecture;Industry 4.0; Industrial Internet of Things; Shipbuilding 4.0; Shipyard 4.0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.