The potential for laccase (EC 1.10.3.2) to be used within the area of textile coloration, specifically for the generation of decorative surface pattern design, remains relatively unexplored. The current study presents a novel process for the coloration of wool and nylon 6,6 fibres via laccase oxidation of aromatic compounds as an alternative to conventional dyeing methods. Emphasis was placed on producing a diverse colour palette, which was achieved through the investigation of three different aromatic compounds as laccase substrates: 1,4-dihydroxybenzene, 2,7-dihydroxynapthalene and 2,5-diaminobenzenesulphonic acid. Reaction processing parameters such as buffer systems and pH values, laccase and aromatic compound concentrations, and reaction times were investigated, all in the absence of additional chemical auxiliaries. Enzymatically dyed fabrics were tested against commercial standards, resulting in reasonably good colour fastness to wash. To demonstrate the coloration and design potential by laccase catalysation of aromatic compounds, specially constructed fabrics using a combination of undyed wool, nylon and polyester yarns were dyed using the onestep laccase-catalysed coloration process. The use of different fibre types and weave structures enabled simple colour variations to be produced. Shadow, reserve and contrasting effects were achieved with the laccase-catalysed dyeing process developed. Important advantages over conventional processing methods include the use of simpler and milder processing conditions that eliminate additional chemical use and reduce energy consumption. Coloration Technology Society of Dyers and Colourists AB, acetate buffer; CB, citrate buffer; PB, phosphate buffer. Prajapati et al. Laccase-catalysed coloration CLB, hydrochloric acid/potassium chloride buffer; AB, acetate buffer; CB, citrate buffer; PB, phosphate buffer. Prajapati et al. Laccase-catalysed coloration
An enzyme-based process was investigated to achieve surface patterning of fabrics as an alternative to conventional chemical processes. In the current study, the enzyme protease was employed to selectively modify a wool/polyester blended fabric to impart decorative surface effects. Controlled protease processing of the blended fabric dyed with Lanasol Blue CE enabled the degradation and removal of the dyed wool fibre component from the fabric blend, resulting in novel fading and differential fabric relief due to degradation of wool, revealing the undyed polyester component after enzyme treatment. A 38.5% weight loss was achieved, therefore 85.6% of the wool in the 45/55% wool/polyester blended fabric was removed from the structure. The activity of protease is highly specific, therefore, it caused no damage to the polyester component. The control studies led to the development of surface pattern designs using the enzyme process, achieving effects similar to current processes such as devoré and discharge printing. This novel enzyme process permits the replacement of harsh chemicals used in current surface patterning processes with small doses of biodegradable enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.