The COVID-19 pandemic has endangered world health and the economy. As the number of cases is increasing, different companies have started developing potential vaccines using both traditional and nano-based platforms to overcome the pandemic. Several countries have approved a few vaccine candidates for emergency use authorization (EUA), showing significant effectiveness and inducing a robust immune response. Oxford-AstraZeneca, Pfizer-BioNTech’s BNT162, Moderna’s mRNA-1273, Sinovac’s CoronaVac, Johnson & Johnson, Sputnik-V, and Sinopharm’s vaccine candidates are leading the race. However, the SARS-CoV-2 is constantly mutating, making the vaccines less effective, possibly by escaping immune response for some variants. Besides, some EUA vaccines have been reported to induce rare side effects such as blood clots, cardiac injury, anaphylaxis, and some neurological effects. Although the COVID-19 vaccine candidates promise to overcome the pandemic, a more significant and clear understanding is needed. In this review, we brief about the clinical trial of some leading candidates, their effectiveness, and their neutralizing effect on SARS-CoV-2 variants. Further, we have discussed the rare side effects, different traditional and nano-based platforms to understand the scope of future development.
Nanoscience has emerged as a fascinating field of science, with its implementation in multiple applications in the form of nanotechnology. Nanotechnology has recently been more impactful in diverse sectors such as the pharmaceutical industry, agriculture sector, and food market. The peculiar properties which make nanoparticles as an asset are their large surface area and their size, which ranges between 1 and 100 nanometers (nm). Various technologies, such as chemical and biological processes, are being used to synthesize nanoparticles. The green chemistry route has become extremely popular due to its use in the synthesis of nanoparticles. Nanomaterials are versatile and impactful in different day to day applications, resulting in their increased utilization and distribution in human cells, tissues, and organs. Owing to the deployment of nanoparticles at a high demand, the need to produce nanoparticles has raised concerns regarding environmentally friendly processes. These processes are meant to produce nanomaterials with improved physiochemical properties that can have significant uses in the fields of medicine, physics, and biochemistry. Among a plethora of nanomaterials, silver nanoparticles have emerged as the most investigated and used nanoparticle. Silver nanoparticles (AgNPs) have become vital entities of study due to their distinctive properties which the scientific society aims to investigate the uses of. The current review addresses the modern expansion of AgNP synthesis, characterization, and mechanism, as well as global applications of AgNPs and their limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.