Electrolyte concentration is one of the important parameters on Lead-Acid Battery (LAB) outcome. Lead-acid battery has been made with static and dynamic electrolyte treatment where 4 variations of electrolyte concentration (20%, 30%, 40% and 50%) and 1A current applied in the system during charging-discharging test to analyze the relationship of the electrolyte concentration to the battery characteristic and compare static and dynamic lead-acid battery performance. The experiment result that for dynamic lead acid battery, the capacity increases along with the higher concentration from 20% to 40% but decrease at 50% compare to 40% for 3 first cycle charge-discharge test when the static lead-acid battery unwork at concentration 20% and show the increases capacity along with increases concentration. In capacity and efficiency point of view, dynamic lead-acid show better performance compare to static lead-acid battery.
Renewable energy such as solar energy, waves and wind require batteries as a storage of electrical energy which still has constraints related to voltage, capacity, and energy efficiency. This experiment aims to determine the effect of electrode size on lead-acid dynamic and static battery capacity and energy efficiency. Dynamic and static single cell lead-acid batteries consist of three different electrode sizes, 13.5x7.5 cm 2 (A1); 22.5x7.5 cm 2 (A2) and 32.5x7.5 cm 2 (A3) have been developed. Continuous and simultaneous charge-discharge test using turnigy accucell-6 50 w and chargemaster 2.02 software as graphic programming. Based on experiments, dynamic batteries perform better than static batteries with a difference in capacity of up to 48% and differences in energy efficiency up to 17%. The best performance is obtained on A3 dynamic batteries with an average capacity capacity of 10357 mAh and an average energy efficiency of 81%.
Most of the residents in Mangunrejo Hamlet, Bangkok Village, Gurah District, Kediri Regency, East Java Province, cultivate catfish as one of their livelihoods. Catfish Pellet Printing Machine Capacity of 40 kg/hour can be a solution to reduce the cost of catfish cultivation so as to increase the profits obtained. In designing a catfish pellet molding machine with a capacity of 40 kg/hour, among others, planning the frame design and testing, calculating the frame, making the frame and components supported by the frame. Several processes in making the frame on a catfish pellet molding machine with a capacity of 40 kg/hour include material procurement, measurement, cutting, welding, drilling, cutting, finishing, and assembling components supported by the frame, as well as testing the frame. Based on the results of the discussion, it can be concluded that the type of frame material used is angled iron 6 meters 40 mm x 4 mm thick 3 mm with engine frame dimensions as follows: height 104 cm, width 104 cm, and length 119 cm. In addition, this frame is also able to support a variety of mixed materials that will be used to print pellets because because σtensile frame<σmax material that is 16,09 N/mm2 < 723,83 N/mm2.
<p class="AbstractEnglish"><strong>Abstract:</strong> Electrolyte flow rate is one of the important parameters on Redox Flow Battery (RFB) performance. A single cell lead acid battery has been made with the RFB system by giving 4 variations in flow speed (45 mL/min, 77 mL/min, 90 mL/min and 105 mL/min), two electrolyte concentrations (30% and 40%) and applied 1 A of charging-discharging current with the aim of an88ukmalyzing the relationship of the electrolyte flow rate of the battery to the RFB system capacity. The results showed that the flow of electrolytes from tanks outside the cell battery was able to increase battery capacity by increasing the number of spontaneous redox reactions during charging and discharging. The cycle time and battery capacity increase at the beginning of the filling-emptying cycle but have a downward trend with the increasing number of cycles. Batteries with an electrolyte concentration of 30% and speeds of 90 mL/mnt have the best performance in terms of discharging capacity compared to other batteries.</p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Laju aliran elektrolit adalah salah satu parameter penting pada kinerja Redox Flow Battery (RFB). Baterai asam timbal sel tunggal telah dibuat dengan sistem RFB dengan memberikan 4 variasi kelajuan aliran (45 mL/mnt, 77 mL/mnt, 90 mL/mnt dan 105 mL/mnt), dua konsentrasi elektrolit (30% dan 40 %) dan diterapkan 1 A arus pengisian-pemakaian dengan tujuan menganalisis hubungan laju aliran elektrolit baterai dengan kapasitas sistem RFB. Hasil penelitian menunjukkan bahwa aliran elektrolit dari tangki di luar baterai sel mampu meningkatkan kapasitas baterai dengan meningkatkan jumlah reaksi redoks spontan selama pengisian dan pemakaian. Waktu siklus dan kapasitas baterai meningkat pada awal siklus pengisian-pengosongan tetapi memiliki tren menurun dengan meningkatnya jumlah siklus. Baterai dengan konsentrasi elektrolit 30% dan kelajuan 90 mL/mnt memiliki kinerja terbaik dalam hal kapasitas pemakaian dibandingkan baterai lainnya.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.