This review discusses the history and evolution of the state of dietary fiber (DF) with account of refinements in extraction methods and legal definitions subsequent to the launch of DF hypothesis. For a long time, defining and regulating DFs relied heavily on their chemical compositions and analytical methods. Although chemical compositions and analytical methods still play an important role in the definition of DF, physiological activity has also been taken into consideration. The precise definition of DF is still evolving, particularly whether oligosaccharides degrees of polymerization (DP) 3-9 should be considered as DF or not. Decades of scientific research have initiated the expansion of the term DF to include indigestible oligosaccharides with their DP between 3 and 9; hence responding to the positive health benefits of DF as well as fulfilling the needs in food labeling regulations.
This study was aimed to investigate the presence of Bacillus coagulans vegetative cells in the intestine and fecal samples in rats fed B. coagulans spores as well as to estimate the ratios of spores and vegetative cells in these samples. A two-step process has been developed to enumerate B. coagulans in different mixed bacterial samples, specifically (1) observation of yellow ring formation on modified GYEA medium upon incubation at 55°C, (2) microscopic examination of spore formation after 7 d of incubation. Our results have demonstrated the presence of vegetative cells in the intestinal and fecal samples in rats fed B. coagulans spores. The ratios of B. coagulans spores and vegetative cells in cecal fluid, colonic content, and feces were approximately 2:8, 2:8, and 4:6, respectively. The existence of B. coagulans vegetative cells improved the intestinal milieu through an elevated short-chain fatty acid concentrations, higher fecal moisture, and lower fecal pH.
Plant-derived protein hydrolysates have potential applications in nutrition. Rice protein hydrolysates (RPHs), an excellent source of proteins, have attracted attention for the development of cosmeceuticals. However, few studies have reported the potential application of RPH in analysis, and this study examined their antioxidant activities and the inhibitory activities of skin aging enzymes. The results indicated that the total phenolic and flavonoid concentrations were 2.06 ± 0.13 mg gallic acid equivalent/g RPHs and 25.96 ± 0.52 µg quercetin equivalent/g RPHs, respectively. RPHs demonstrated dose-dependent activity for scavenging free radicals from 1,1-diphenyl-2-picrylhydrazyl [half-maximal inhibitory concentration (IC50) = 42.58 ± 2.1 mg/g RPHs] and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (IC50 = 2.11 ± 0.88 mg/g RPHs), dose-dependent reduction capacity (6.95 ± 1.40 mg vitamin C equivalent/g RPHs) and oxygen radical absorbance capacity (473 µmol Trolox equivalent/g RPHs). The concentrations of the RPH solution required to achieve 50% inhibition of hyaluronidase and tyrosinase activities were determined to be 8.91 and 107.6 mg/mL, respectively. This study demonstrated that RPHs have antioxidant, antihyaluronidase, and antityrosinase activities for future cosmetic applications.
The dose-response relationship of the water-soluble carbohydrate concentrate (WSCC) from wild grape ( Vitis thunbergii Sieb. & Zucc.) on intestinal health was investigated in this study. WSCC contained carbohydrates up to 71.9 g/100 g, including arabinose-rich pectic polysaccharide, hemicelluloses, glucose, and fructose. The consumption of WSCC (0.5 and 1.5 g/100 g of diet) effectively (P < 0.05) shortened gastrointestinal transit time (-62.3 to -63.0%), decreased toxic cecal ammonia (-59.3 to -63.0%) and daily fecal ammonia output (-29.7 to -41.4%), decreased the activities of fecal β-glucuronidase (-78.6%), β-glucosidase (-80.5 to -87.5%), mucinase (-64.6 to -72.7%), and urease (-83.2 to -86.0%), increased fecal moisture content (116-129%), and also increased short-chain fatty acid levels in cecal contents (1.8-3.3-fold). These findings suggested that consumption of wild grape WSCC might diminish the exposure of intestinal mucosa to toxic ammonia and other detrimental compounds and, hence exert, favorable effects on improving gastrointestinal milieu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.