Natural supramolecular filaments have the ability to cross‐link with each other and to interface with the cellular membrane via biomolecular noncovalent interactions. This behavior allows them to form complex networks within as well as outside the cell, i.e., the cytoskeleton and the extracellular matrix, respectively. The potential of artificial supramolecular polymers to interact through specific noncovalent interactions has so far only seen limited exploration due to the dynamic nature of supramolecular interactions. Here, a system of synthetic supramolecular tubes that cross‐link forming supramolecular networks, and at the same time bind to biomimetic surfaces by the aid of noncovalent streptavidin–biotin linkages, is demonstrated. The architecture of the networks can be engineered by controlling the density of the biotin moiety at the exterior of the tubes as well as by the concentration of the streptavidin. The presented strategy provides a pathway for designing adjustable artificial supramolecular superstructures, which can potentially yield more complex biomimetic adaptive materials.
The tesseract contained 2D material, C24Se12, is an effective molecular sieve with high selectivity to recover helium from natural gas under ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.