The aesthetic beauty of a landscape is an integral value reflected in artistic inspiration. Science, in contrast, tries to quantify the landscape using various methods. Of these, geodiversity indices have been found to be a useful approach, and this geomorphological diversity is characterized through derivatives made from digital terrain models (DTM). While these methods are useful, they have a drawback that the value of some landscape features may be underestimated if they have regular forms. For example, the aesthetic and scientific attractiveness of our study area, the Chaîne des Puys (Auvergne, France), a UNESCO World Heritage site, is strongly related to the distinctive small volcanoes, but despite being an outstanding element of the landscape, the scoria cones do not stand out well in geodiversity indices. This is because they have almost symmetrical conical forms and regular slopes that score low in the available geodiversity methods. We explore this problem and investigate how to overcome the low geodiversity performance of these distinctive landscape elements. We propose a modified approach for scoria cones using the normal input layers but adapted to the cone geometry. The modified indices are easy to compute and consider the uniformity and symmetry of larger landscape elements that form scientifically integral and aesthetically vital components of the landscape. The method is applicable to the tens of thousands of small monogenetic volcanoes in the hundreds of volcanic fields around the world, and could be extended to other volcanic features, such as domes. It would be possible to use the method to study larger volcanoes, as they often share and replicate the small-scale monogenetic morphology considered here.
Use of 3D planning and 3D printing is expanding in healthcare. One of the common applications is the creation of anatomical models for the surgical procedure from DICOM files. These patient-specific models are used for multiple purposes, including visualization of complex anatomical situations, simulation of surgical procedures, patient education and facilitating communication between the different disciplines during clinical case discussions. Cardiac and thoracic surgical applications of this technology development include the use of patient-specific 3D models for exploration of ventricle and aorta function and surgical procedural planning in oncology. The 3D virtual and printed models provide a new visualization perspective for the surgeons and more efficient communication between the different clinical disciplines. The 3D project was started at the Semmelweis University with the cooperation of the Thoracic Surgery Department of the National Institute of Oncology in 2018. The authors want to share their experiences in 3D designed medical tools. Orv Hetil. 2019; 160(50): 1967–1975.
Scoria cones are favorite targets of morphometric research. However, in-depth, DTM-based studies have appeared only recently, and new methods are being developed. This study provides a classic evaluation of the cones of Chaîne des Puys (Auvergne, France) as well as introduces a more detailed and statistics-based set of properties. Beside the classic parameters, a sectorial approach is applied to the slope distributions calculated from high resolution DTMs for 25 cones of different lithologies, in order to study the various (a)symmetries of the cones. DTM-based morphometric characteristics have been found to be different from classic descriptors, whereas the sectorial approach describes correctly the more and the less regular shapes. The distribution of interquartile ranges of the sectorial slope distributions is skewed. Sectorization discriminates various types of symmetries: there are almost circular cones, but the majority are elongated and have some asymmetry. The relationship between size parameters reflects the lithology, rather than the age of the cone. The attempt to relate morphometric parameters to age data is only partially successful: although there is a certain trend, within the same lithological group, subtle but possibly systematic trends can be detected for decreasing morphometric values (e.g., slope) with the age. The regression models indicate various outcomes. Further work is needed to understand all the diverse parameters, especially the lithology–shape relationship, and how symmetry is connected to different factors.
<p>In 2020 we celebrate the 40<sup>th</sup> anniversary of the seminal works of Wood (1980a,b) who was one of the first researchers who considered the shapes of volcanoes in a global point of view. These four decades have seen a number of new approaches that were made possible by the ever increasing computer power and the improvements in Digital Terrain Model (DTM) production. The improving resolution and accuracy of the DTMs of various volcanic fields (VF) opened the way of wide variations of volcanic geomorphometric considerations. However, the differences in approach and, even more importantly, the differences in DTM production technology and resolution make the comparative studies and especially global considerations very difficult.</p><p>We have envisioned a global geomorphometric analytical methodology to analyse cinder cone morphometry in terms of shape versus age: The aim is to establish a relationship between the age of scoria cones age and their morphometry. This is knowingly a rather difficult undertaking and we have made only the first steps yet, but our methodological advancements are always developed with this demand in mind.</p><p>For the sake of diversity, in the current study four volcanic areas were considered with different age ranges, four different resolution DEMs and different number of cones:&#160; San Francisco Volcanic Field, Arizona, USA (SFVF, 30 m horizontal resolution, 313 pcs), the Cha&#238;ne des Puys, France (CdP, &#160;0.5 m, 26 pcs), the central-eastern part of the Sierra Chichinautzin, Mexico (SCVF, 5 m, 152 pcs) and Kula Volcanic Field, Turkey (KVF, 12.5 m, 64 pcs). As age data we had either age ranges or measured ages of the individual cones.</p><p>A great number of derivatives (mostly related to slope angles) have been calculated for the individual cones. Their most important statistics and their distribution were computed. Irregularities and, especially, cone degradation modify the original statistical distribution; these distributions can be compared in statistical way. A quantitative distance (metric) has been introduced to study the similarity or dissimilarity of the cones.</p><p>For the comparison, we have grouped the cones in several ways &#8211; they have been observed individually, by areas and by age groups (based on previous researches). For every cone boxplot diagrams, histograms and cumulative histograms were made to detect differences together with average and median values. These age groups were subjects of the Mann &#8211; Whitney statistical test to discriminate statistically independent or dependent samples in the populations. The test showed some clear relations between erosion (shape) and age.</p><p>We created a cinder cone viewer for visualization purposes. This tool can display the aforementioned distributions and helps in picking pairs or groups of cinder cones to compare. As expected, the intra-VF comparisons are typically more successful as inter-VF comparisons. However, promising new morphometric derivatives (e.g., sectorial distributions) are under development.</p><p>Wood, C. A.: Morphometric evolution of cinder cones, J. Volcanol. Geoth. Res., 7, 387&#8211;413, 1980a.</p><p>Wood, C. A.: Morphometric analysis of cinder cone degradation, J. Volcanol. Geoth. Res., 8, 137&#8211;160, 1980b.</p>
<p><strong>Abstract.</strong> The need for car-related navigation and the appearance of the vehicles themselves are much the same age – of course. In the early days, paper maps and personal questioning were solved this problem. Nearly 100 years ago, the first built-in car GPS was released – and this is an innovation that is still an important part of car design. Planning the user interface is a very exciting issue, because only in a few seconds the display needs to provide the user with the right amount of information. In this research our goal was to assess Hungarians driving and built-in GPS using habits and based on this try to suggest the “perfect” interface. A questionnaire was made with 19 or 46 questions and more than 1000 respondents completed it. Because of the high number of questions only selected diagrams are represented. Some answers have also been subjected to different statistical tests.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.