No abstract
Modern machine learning workloads use large models, with complex structures, that are very expensive to execute. The devices that execute complex models are becoming increasingly heterogeneous as we see a flourishing of domain-specific accelerators being offered as hardware accelerators in addition to CPUs. These trends necessitate distributing the workload across multiple devices. Recent work has shown that significant gains can be obtained with model parallelism, i.e, partitioning a neural network's computational graph onto multiple devices. In particular, this form of parallelism assumes a pipeline of devices, which is fed a stream of samples and yields high throughput for training and inference of DNNs. However, for such settings (large models and multiple heterogeneous devices), we require automated algorithms and toolchains that can partition the ML workload across devices. In this paper, we identify and isolate the structured optimization problem at the core of device placement of DNN operators, for both inference and training, especially in modern pipelined settings. We then provide algorithms that solve this problem to optimality. We demonstrate the applicability and efficiency of our approaches using several contemporary DNN computation graphs.
Heterogeneous systems consisting of multi-core CPUs, Graphics Processing Units (GPUs) and many-core accelerators have gained widespread use by application developers and data-center platform developers. Modern day heterogeneous systems have evolved to include advanced hardware and software features to support a spectrum of application patterns. Heterogeneous programming frameworks such as CUDA, OpenCL, and OpenACC have all introduced new interfaces to enable developers to utilize new features on these platforms. In emerging applications, performance optimization is not only limited to effectively exploiting data-level parallelism, but includes leveraging new degrees of concurrency and parallelism to accelerate the entire application.To aid hardware architects and application developers in effectively tuning performance on GPUs, we have developed the NUPAR benchmark suite. The NUPAR applications belong to a number of different scientific and commercial computing domains. These benchmarks exhibit a range of GPU computing characteristics that consider memory-bandwidth limitations, device occupancy and resource utilization, synchronization latency and device-specific compute optimizations. The NUPAR applications are specifically designed to stress new hardware and software features that include: nested parallelism, concurrent kernel execution, shared hostdevice memory and new instructions for precise computation and data movement. In this paper, we focus our discussion on applications developed in CUDA and OpenCL, and focus on high-end server class GPUs. We describe these benchmarks and evaluate their interaction with different architectural features on a GPU. Our evaluation examines the behavior of the advanced hardware features on recently-released GPU architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.