Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix‐mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation‐inducing hydrophilic drugs, accelerated healing of skin injury is obtained through pH‐dependent release of TA and its multifaceted mechanisms as an antibacterial, antioxidant, hemostatic, and anti‐inflammatory moiety. The developed gelatin‐TA (GelTA) hydrogel also shows an outstanding effect on the formation of extracellular matrix and wound closure in vivo via offered cell adhesion sites in the backbone of gelatin that provide increased re‐epithelialization and better collagen deposition. These results suggest that the multifunctional GelTA hydrogel is a promising candidate for the clinical treatment of full‐thickness wounds and further development of wound dressing materials that releases active agents in the neutral or slightly basic environment of infected nonhealing wounds.
Cystic echinococcosis (CE), which is caused by the metacestode of Echinococcus granulosus, is one of the most important zoonoses affecting humans. Benzimidazoles (in particular albendazole) and praziquantel (PZQ) are effective against CE, but poor water solubility of these agents often leads to inadequate results. Here, we evaluate the effects of chitosan-albendazole (ChABZ) and chitosan-praziquantel (ChPZQ) nanoparticles as a new formulation on hydatid cysts both in vitro and in vivo. Developed microcysts in culture were treated with different concentrations of ChABZ and ChPZQ nanoparticles (either alone or in combination), and ABZ + PZQ suspension. The viability rate of microcysts was used to evaluate the drug efficacies. In addition, the prophylactic and therapeutic effects of the drugs were studied on infected DBA/2 mice. Transmission electron microscopy was used to observe the ultra-structural changes. The viability rate of microcysts and differences in cyst weights were compared by ANOVA, and the cyst numbers were compared using the Kruskal-Wallis test. The combination of ChABZ + ChPZQ nanoparticles was more effective than the ABZ + PZQ suspension in vitro (p < 0.05). In prophylaxy, a significant reduction was observed both in size and in number of the cysts in ChABZ + ChPZQ nanoparticle groups compared with the control group (p < 0.05). In the therapeutic stage, however, this treatment only reduced the cyst numbers. Degeneration of the microcysts treated with the drugs was evident in the ultra-structural imaging. Overall, the nanoparticulate drugs were more effective than their suspension counterparts, but further studies are recommended to evaluate the full potential of these nanoparticles in the treatment of human CE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.