Modern power analysis attacks (PAAs) and existing countermeasures pose unique challenges on the design of simultaneously secure, power efficient, and high-performance ICs. In a typical PAA, power information is collected with a monitoring circuit connected to the compromised device. The non-typical voltage variations induced on a power distribution network (PDN) by such a malicious probing are sensed with on-chip sensors and exploited in this paper for detecting PAAs in real-time using statistical analysis. A closed-form expression for the voltage variations caused by malicious probing is provided. Guidelines with respect to the PDN characteristics and number of sensors are proposed for securing power delivery. The PAA detection system is designed in a 45-nm standard CMOS process. Based on the simulation results, a PAA on an IBM benchmarked microprocessor is detected with the accuracy of 88% with 30 on-chip sensors. Power overhead of 0.34% and 14.3% is demonstrated in, respectively, the IBM microprocessor and a typical advanced encryption standard system. In a practical cryptographic device, security sensitive PDN regions can be identified, significantly reducing the number of the on-chip sensors.
Mixed-signal machine-learning classification has recently been demonstrated as an efficient alternative for classification with power expensive digital circuits. In this paper, a single-MOSFET analog multiplier is proposed for classifying high-dimensional input data into multi-class output space with less power and higher accuracy than state-of-the-art mixed-signal linear classifiers. A high-resolution (i.e., multi-bit) multiplication is facilitated within a single-MOSFET by feeding the features and feature weights into, respectively, the body and gate inputs. Highresolution classifier that considers the decisions of the individual predictors is designed at 180 nm technology node and operates at 100 MHz in near/subthreshold region. To evaluate the performance of the classifier, a reduced MNIST dataset is generated by downsampling the MNIST digit images from 784 features to 48 features. The system is simulated across a wide range of PVT variations, exhibiting average accuracy of 92% (2% improvement over state-of-the-art), energy consumption of 67.3 pJ per classification (over 8 times lower than state-of-the-art classifiers), area of 27,570 µm 2 per binary classifier, and a stable response under PVT variations. Finally, to provide ground for future work on ultra-low-power deep and convolutional networks, scalability and robustness of the proposed multiplier is evaluated with a convolutional neural network on CIFAR-10. Similar classification accuracy with digital and SMART hardware has been observed. All the code and simulation files are available at an online public GitHub repository, https://github.com/faridken/SMART-Multiplier-for-ML.
Ambipolar carbon nanotube based field-effect transistors (AP-CNFETs) exhibit unique electrical characteristics, such as tri-state operation and bi-directionality, enabling systems with complex and reconfigurable computing. In this paper, AP-CNFETs are used to design a mixed-signal machine learning logistic regression classifier. The classifier is designed in SPICE with feature size of 15 nm and operates at 250 MHz. The system is demonstrated in SPICE based on MNIST digit dataset, yielding 90% accuracy and no accuracy degradation as compared with the classification of this dataset in Python. The system also exhibits lower power consumption and smaller physical size as compared with the state-of-the-art CMOS and memristor based mixed-signal classifiers. Power consumption and physical size of integrated circuits (ICs) is an increasing concern in many emerging machine learning (ML) applications, such as, autonomous vehicles, security systems, and Internet of Things (IoT). Existing state-of-the-art architectures for digital classification, are highly accurate and can provide high throughput 1. These classifiers, however, exhibit high power consumption and occupy a relatively large area to accommodate complex ML models. Alternatively, mixed-signal classifiers have been demonstrated to exhibit orders of magnitude reduction in power and area as compared to digital classifiers with prediction accuracy approaching the accuracy of digital classifiers 2-9. While significant advances have been made at the ML circuit and architecture levels (e.g., in-SRAM processing 2 , comparator based computing 3 , and switched-capacitor neurons 4), the lack of robust, ML-specific transistors is a primary concern in ML training and inference with all conventional CMOS technologies. To efficiently increase the density and power efficiency of modern ML ICs while enabling complex computing, emerging technologies should be considered. While the non-volatility of memristors has proven quite attractive for storing the weights required for feature-weight multiplication 10-13 , field-effect transistors provide several advantages over memristors for ML. First, transistors provide a broader range of linear tuning of resistance, thereby better matching ML models. Second, transistors are not subject to the deleterious aging that deteriorates memristor behavior over time. Finally, the connectivity between feature-weight multiplication layers requires electrical signal gain, which cannot be provided by memristors; transistors can be used for such interlayer connections, thereby enabling a monolithic integrated circuit that can be fabricated efficiently. Of particular interest for on-chip classification are ambipolar devices. Owing to unique electrical characteristics, as described in the next section, ambipolar devices are expected to provide efficient on-chip training and inference solutions and reduce design and routing complexity of ML circuits. A carbon nanotube (CNT) ambipolar device has been reported as a potential candidate for controllable ambipol...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.