Phenotypic similarities and differences between a cultivated variety of the tuberous legume Vigna vexillata from Bali, Indonesia, the putative domesticated variety macrosperma and wild types from Africa, Australia and Indonesia, were reported previously. The present study was undertaken to establish the genetic compatibility of these three accession classes. Seventeen accessions, comprising eight cultivated Bali accessions, one var. macrosperma accession and eight wild accessions from Africa and Austronesia, were grown in large pots in shade house facilities in Townsville, Australia. Not all hybrid combinations were attempted because for some accession combinations, suitable matching flowers were not available at the same time. The main aim was to attempt enough crosses between accessions from the respective classes to establish whether the classes were genetically compatible. Hybridisation was conducted by hand pollination in the morning, using newly-open flowers that had been emasculated before sunset on the day before. Pods and viable hybrid seed were obtained from the Bali × Bali, var. macrosperma × wild and wild African × wild Austronesian combinations. However, difficulty was encountered in obtaining viable and/or self-fertile hybrids between the Bali accessions and the other two classes. Depending on the particular combination of parental accessions, different genetic breakdown mechanisms were observed with the Bali × var. macrosperma and Bali × wild combinations. In some instances, flowers failed to set pods and/or the young pods abscised before maturity; pods set but seed were shrivelled and/or non-viable; viable seeds were set but the hybrid seedling plants were short-lived; or, in a few instances (Jimbaran Bali × wild Austronesian), vigorous hybrid plants were obtained but were self-sterile. Mitotic chromosome counts showed there was no difference in chromosome number between the Bali accessions, the Austronesian accessions and those hybrids that were viable but infertile. All exhibited 2n = 22. Pollen viability analyses using Alexander’s stain indicated that the numbers of pollen grains per flower and the percentages of pollen grain that were viable were substantially lower in the hybrids than in both the cultivated Bali and wild parental accessions. Consistent with this observation, small numbers of viable seeds were obtained when viable pollen from the respective parents was backcrossed onto the self-sterile hybrids. The results suggested that the cultivated Bali accessions do not belong to the same primary gene pool as the other cultivated and wild V. vexillata accessions and that it would be difficult to use the Bali accessions and var. macrosperma concurrently to breed seed crop varieties. A taxonomic review of V. vexillata is also warranted.
A number of plant microRNAs have been demonstrated to regulate developmental processes by integrating internal and environmental cues. Recently, the Arabidopsis thaliana F-box protein HAWAIIAN SKIRT (HWS) gene has been described for its role in miRNA biogenesis. We have isolated in a forward genetic screen a tomato (Solanum lycopersicum) line mutated in the putative ortholog of HWS. We show that the tomato hws-1 mutant exhibits reduction in leaflet serration, leaflet fusion, some degree of floral organ fusion, and alteration in miRNA levels, similarly to the original A. thaliana hws-1 mutant. We also describe novel phenotypes for hws such as facultative parthenocarpy, reduction in fertility and flowering delay. In slhws-1, the parthenocarpy trait is influenced by temperature, with higher parthenocarpy rate in warmer environmental conditions. Conversely, slhws-1 is able to produce seeds when grown in cooler environment. We show that the reduction in seed production in the mutant is mainly due to a defective male function and that the levels of several miRNAs are increased, in accordance with previous HWS studies, accounting for the abnormal leaf and floral phenotypes as well as the altered flowering and fruit development processes. This is the first study of HWS in fleshy fruit plant, providing new insights in the function of this gene in fruit development.
Abstrak: Mutu beras merupakan salah satu faktor yang menentukan tingkat penerimaan konsumen terhadap suatu varietas. Persilangan dan seleksi merupakan salah satu kegiatan pemuliaan tanaman untuk merakit tanaman guna memperolah genotip padi yang memiliki kualitas beras tinggi. Untuk menentukan metode seleksi mana yang paling efektif untuk suatu karakter, terutama mutu beras perlu adanya informasi bagaimana karakter tersebut dikendalikan dan diwariskan. Penelitian ini bertujuan untuk memperoleh informasi pola pewarisan beberapa karakter mutu beras, antara lain butir kapur, dan kandungan amilosa. Penelitian ini dilaksanakan dari bulan Januari sampai September 2012 di Laboratorium Analisis Tanaman dan Bioteknologi Fakultas Pertanian, Universitas Padjadjaran. Bahan yang digunakan pada penelitian ini yaitu 300 butir beras F 2 hasil persilangan Ciherang x Pandanwangi, Pandanwangi x Ciherang, Ciherang x Basmati, dan Basmati x Ciherang. Sedangkan untuk masing-masing tetua digunakan Ciherang, Pandanwangi, dan Basmati. Sebanyak 20 butir beras digunakan untuk pengujian karakterbutir kapur dan 5 butir beras untuk pengujian kandungan amilosa. Berdasarkan uji normalitas Kolmogorov-Smirnov sebaran data untuk karakter bentuk beras kedua seri persilangan, sedangkan uji segregasi menggunakan metode Chi-kuadrat. Hasil penelitian ini menunjukkan bahwa karakter butir kapur dan kandungan amilosa diwariskan secara simplegenic, sehingga proses seleksi dapat dilakukan pada generasi awal, khususnya pada hasil persilangan Ciherang x Pandanwangi dan Pandanwangi x Ciherang, sedangkan untuk persilangan Ciherang x Basmati dan Basmati x Ciherang, kedua karakter diwariskan secara kuantitatif. Latar belakang genetik tetua menentukan pola pewarisan karakter kandungan amilosa.
Abstract. Carsono N, Juwendah E, Liberty, Sari S, Damayanti F, Rachmadi M. 2021. Optimize 2,4-D concentration and callus induction time enhance callus proliferation and plant regeneration of three rice genotypes. Biodiversitas 22: 2555-2560. The development of callus in the course of transgenic rice avoids the somaclonal variants. To obtain a high number of normal phenotypes and a low number of somaclonal variants requires an appropriate 2,4-D concentration. In this study, we obtained the best callus induction time and a high number of green plant regeneration for three responsive rice genotypes on different 2,4-D concentrations in NB5 medium. The mature seeds of rice embryos were used as explants. A completely randomized factorial design was applied with four levels of 2,4-D concentrations (0, 1, 3, and 5 ppm), two levels of induction time (one and two weeks), and three rice genotypes (cv. Fatmawati, Nipponbare, and Kitaake). The study revealed that there was no interaction effect among genotype, 2,4-D concentration, and callus induction time. Three rice genotypes performed best in callus proliferation and regeneration. One-week callus induction time showed higher callus growth capacity (CGC) as compared to two-week callus induction time. Shoot regeneration capacity (SRC) was independently affected by genotype as well as by callus induction time. The interaction effect between 2,4-D concentration and callus induction time was observed on plant regeneration capacity (PRC). Without the addition of 2,4-D and 1 ppm of 2,4-D, the green plant regeneration capacity (GRC) was comparatively higher. Addition of 2,4-D showed a significant effect, especially at the plant regeneration stage. We found that one-week callus induction was the best treatment for callus proliferation and plant regeneration. We recommend the use of one-week callus induction and 1 ppm of 2,4-D for rice callus proliferation (sub-culture) and subsequent plant regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.