Rabbit ear wound repair is an accepted model for studies of tissue regeneration, leading to scar less wound repair. It is believed that a specific tissue, blastema, is responsible for such interesting capacity of tissue regeneration. To test this idea further and to elucidate the cellular events happening during the ear wound repair, we designed some controlled experiments in vitro. Small pieces of the ear were punched and washed immediately with normal saline. The tissues were then cultured in the Dulbecco's Modified Eagle(')s Medium, supplemented with fetal bovine serum in control group. As a treatment vitamin A and C was used to evaluate the differentiation potency of the tissue. These tissues were fixed, sectioned, stained, and microscopically studied. Micrographs of electron microscopy provided evidences revealing dedifferentiation of certain cells inside the punched tissues after incubation in tissue culture medium. The histological studies revealed that cells of the tissue (i) can undergo cellular proliferation, (ii) differentiate to epithelial, condrogenic, and osteogenic tissues, and (iii) regenerate the wounds. These results could be used for interpretation of the possible events happening during tissue engineering and wound repair in vitro. An important goal of this study is to create a tissue engineering and tissue banking model, so that in the future it could be used in further blastema tissue studies at different levels.
Embryo manipulations may cause the misexpression of various genes, most of which play critical roles in the regulation of implantation. This study aimed to evaluate the effects of embryo biopsy on the expression of miR-Let-7a and its gene targets including ErbB4, Tgf-α, Itg-αv, Itg β3 on the implantation of mouse embryo. Embryos were produced by in vitro fertilization followed by blastomere biopsy at the eight-cell stage. The effects of blastomere removal on the expression of genes ErbB4, Tgf-α, Itg αv, Itg β3, and miR-Let-7a as well as the alteration of the blastocyst cell number were compared in both biopsied and non-biopsied groups. Finally, blastocyst attachment was assessed on culture dishes precoated with Fibronectin. The results revealed that there were no significant differences between the biopsied and non-biopsied embryos with reference to the blastocyst formation rates, the average inner cell mass, trophectoderm cell number, and percentage of attachment of blastocysts (P > 0.05). The expression of ErbB4, Itg-β3, Itg-αv, TGF-α transcripts, and miR-Let-7a in blastocysts biopsied embryos did not differ from the non-biopsied blastocysts (P > 0.05). The results demonstrated that the preimplantation embryo development and attachment of biopsied embryos in vitro is not adversely affected by one blastomere biopsy at the eightcell stage embryo. K E Y W O R D S blastocyst attachment, embryo biopsy, implantation gene J Cell Biochem. 2019;120:9430-9436. wileyonlinelibrary.com/journal/jcb 9430 |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.