Miniaturized nanohandling robots or microrobots are widely used in different elds of application (e.g. microassembly, handling of biological cells or characterisationof nano layers), when a high positioning accuracy in the low ¹m or nm-range is required. A robot-based nanohandling station using a scanning electron microscope (SEM) or a light microscope is introduced. The microrobots working in that nanohandling station are driven by a novel actuator system. These actuators enable the microrobots to perform movements in coarse-and ne-positioningmodes offering a nanometer precision. Preliminary to the long term aim to realize autonomous microrobots, the feasibility of the integration of an on-board power supply has been shown. First simple manipulation tasks performed with a newly developed microrobot are introduced as well.
This paper reports the remote handling of microscale objects, between two sites approximately 630 km distant. To manipulate objects less than 10 µm, specific equipments such as AFM (Atomic Force Microscope) cantilevers integrated into a SEM (Scanning Electron Microscope) are generally required. Enabling remote access to such a system would benefit any micro/nanoresearcher. However, vision feedback and sensor data of a micromanipulation system are generally limited, hence the implementation of a teleoperation scenario is not straightforward. Specific tools are proposed here for an intuitive manipulation in a wide range of applications. To ensure ease of manipulation, both a 3D virtual representation of the scene and haptic feedback are provided. Force sensor feedback is limited since only two measures are available. In order to extend this information, vision algorithms are developed to estimate the respective positions of the tool and objects, which are then used to calculate the haptic feedback. The stability of the overall scheme is very sensitive to time delays. This requirement is taken into account in vision algorithms and the communication module which transfers the data between the two remote sites. In addition, the proposed robotic control architecture is modular so that the platform can be used for a wide range of applications. First results are obtained on a teleoperation between Paris, France, and Oldenburg, Germany.
Microrobotics is a field of high interest in the recent past. Commonly used imaging modalities in this field include optical microscopes and scanning electron microscopes (SEM). Due to the scanning principle of the SEMs, objects in motion may not be represented in the SEM images the same way as they really are. Movement leads to movement artifacts. This effect strongly limits the possibilities for the use of image based methods for tracking and recognition and it also limits the possible speeds achievable for automated procedures. In this work, a tracking algorithm is proposed which is robust to artifacts and distortions generated by object motion. The algorithm is tested and validated in experiments.
Abstract-The propulsion of nano-ferromagnetic objects by means of MRI gradients is a promising approach to enable new forms of therapy. In this work, necessary techniques are presented to make this approach work. This includes path planning algorithms working on MRI data, ferromagnetic artifact imaging and a tracking algorithm which delivers position feedback for the microdevice and a propulsion sequence to enable interleaved magnetic propulsion and imaging. Using a dedicated software environment integrating path-planning methods and real-time tracking, a clinical MRI system is adapted to provide this new functionality for potential controlled interventional targeted therapeutic applications. Through MRI-based sensing analysis, this paper aims to propose a framework to plan a robust pathway to enhance the navigation ability to reach deep locations in human body. The proposed approaches are validated with different experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.