RESUMOA simulação do comportamento hidrológico de bacias hidrográficas consiste em uma das principais ferramentas na gestão dos recursos hídricos, devido à possibilidade de predição do regime fluvial. A bacia em estudo está localizada na região Alto Rio Grande, Sul de Minas Gerais, com área de drenagem de 2.094 km², constituindo uma das bacias fundamentais de drenagem para o reservatório da Usina Hidrelétrica de Camargos (UHE -Camargos/CEMIG). Neste contexto se objetivou desenvolver e aplicar um modelo hidrológico semi-conceitual, na forma semi-distribuída, para simular o comportamento hidrológico da bacia do Rio Aiuruoca, com apoio dos SIGs e sensoriamento remoto, disponibilizando uma ferramenta útil para o gerenciamento e planejamento dos recursos hídricos na região. Os resultados do coeficiente estatístico de Nash-Sutcliffe (C NS ) foram de 0,87 e 0,92 para as etapas de calibração e verificação, respectivamente, o que, de acordo com a classificação proposta para modelos hidrológicos de simulação, permite qualificá-lo para simulação do comportamento hidrológico na bacia hidrográfica do Rio Aiuruoca. Palavras-chave: hidrologia, escoamento, modelos hidrológicosHydrologic modeling in the Aiuruoca river basin, Minas Gerais State ABSTRACTThe hydrological simulation of watersheds is one of the most important tools for water resources management due to the possibility of flow regime prediction. The Aiuruoca river basin is located in the Alto Rio Grande Basin, southern Minas Gerais State, with 2,094 km 2 of drainage area, and is very important drainage basin into the Camargos Hydropower Plant Reservoir (UHE -Camargos/CEMIG). In this context, this work had the objective of developing and applying a semi-conceptual hydrologic model, in semi-distributed approach, for hydrologic simulation in the Aiuruoca river basin, based on GIS and Remote Sensing tools, thus creating an important tool for management and planning of water resources in the region. The Nash-Sutcliffe coefficients (C NS ), respectively, for calibration and validation periods, were 0.87 and 0.92, showing that the model is able to simulate the hydrologic impacts on the basin, predicting its condition for feeding of the Camargos Reservoir.
RESUMO:Este trabalho foi realizado com o objetivo de validar os focos de calor utilizados no monitoramento de queimadas. Para isso, mapearam-se as queimadas ocorridas em seis Unidades de Conservação, localizadas no norte do estado de Minas Gerais, no período de 03 de setembro a 05 de outubro de 2008, por meio da segmentação semiautomática de imagens LandSat 5 TM. Foram mapeadas 190 queimadas e averiguada sua detecção pelos satélites por meio dos focos de calor gerados operacionalmente pelo Instituto Nacional de Pesquisas Espaciais -INPE. Também foram analisadas por classe de tamanho, a fim de verificar qual a influência do tamanho das queimadas na detecção. A análise da distância dos focos aos limites das queimadas foi feita por meio de faixas equidistantes ("buffers"), com incremento de 1,00 km em cada classe até o limite de 9,00 km. Das cicatrizes de queimadas analisadas, aproximadamente 26,00% foram detectadas, demonstrando limitações do sistema em detectar aquelas menores que 100,00 ha. Apesar dessa limitação, grande parte da área impactada foi detectada, perfazendo um total de acerto de aproximadamente 71,00%. Os resultados de erros de localização foram considerados satisfatórios, tendo em vista as limitações técnicas da resolução espacial dos sensores utilizados. Essas informações geram subsídios ao avanço tecnológico do monitoramento orbital.Palavras-chave: Sensoriamento remoto, incêndios florestais, unidades de conservação. VALIDATION OF HOTSPOTS UTILIZED IN THE ORBITAL MONITORING OF BURNT AREAS BY MEANS OF TM IMAGES INTRODUÇÃOA necessidade de avançar continuamente no controle às queimadas em ambientes naturais fomenta a produção de tecnologias que possibilitam monitorar suas ocorrências no planeta. Atualmente, análises geradas em sistemas de informações geográficas com dados derivados de sensoriamento remoto propiciam uma ampla visão sobre distribuição temporal, espacial e padrões das queimadas em diferentes escalas, permitindo estudar as interações do fogo com as relações culturais e sócioambientais.
Light Detection and Ranging, or LIDAR, has become an effective ancillary tool to extract forest inventory data and for use in other forest studies. This work was aimed at establishing an effective methodology for using LIDAR for tree count in a stand of Eucalyptus sp. located in southern Bahia state. Information provided includes in-flight gross data processing to final tree count. Intermediate processing steps are of critical importance to the quality of results and include the following stages: organizing point clouds, creating a canopy surface model (CSM) through TIN and IDW interpolation and final automated tree count with a local maximum algorithm with 5 x 5 and 3 x 3 windows. Results were checked against manual tree count using Quickbird images, for verification of accuracy. Tree count using IDW interpolation with a 5x5 window for the count algorithm was found to be accurate to 97.36%. This result demonstrates the effectiveness of the methodology and its use potential for future applications.
Background: In fast-growing forests such as Eucalyptus plantations, the correct determination of stand productivity is essential to aid decision making processes and ensure the efficiency of the wood supply chain. In the past decade, advances in remote sensing and computational methods have yielded new tools, techniques, and technologies that have led to improvements in forest management and forest productivity assessments. Our aim was to estimate and map the basal area and volume of Eucalyptus stands through the integration of forest inventory, remote sensing, parametric, and nonparametric methods of spatial prediction. Methods: This study was conducted in 20 5-year-old clonal stands (362 ha) of Eucalyptus urophylla S.T.Blake x Eucalyptus camaldulensis Dehnh. The stands are located in the northwest region of Minas Gerais state, Brazil. Basal area and volume data were obtained from forest inventory operations carried out in the field. Spectral data were collected from a Landsat 5 TM satellite image, composed of spectral bands and vegetation indices. Multiple linear regression (MLR), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) methods were used for basal area and volume estimation. Using ordinary kriging, we spatialised the residuals generated by the spatial prediction methods for the correction of trends in the estimates and more detailing of the spatial behaviour of basal area and volume. Results: The ND54 index was the spectral variable that had the best correlation values with basal area (r = − 0.91) and volume (r = − 0.52) and was also the variable that most contributed to basal area and volume estimates by the MLR and RF methods. The RF algorithm presented smaller basal area and volume errors when compared to other machine learning algorithms and MLR. The addition of residual kriging in spatial prediction methods did not necessarily result in relative improvements in the estimations of these methods. Conclusions: Random forest was the best method of spatial prediction and mapping of basal area and volume in the study area. The combination of spatial prediction methods with residual kriging did not result in relative improvement of spatial prediction accuracy of basal area and volume in all methods assessed in this study, and there is not always a spatial dependency structure in the residuals of a spatial prediction method. The approaches used in this study provide a framework for integrating field and multispectral data, highlighting methods that greatly improve spatial prediction of basal area and volume estimation in Eucalyptus stands. This has potential to support fast growth plantation monitoring, offering options for a robust analysis of high-dimensional data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.