Purpose: Clinical outcomes for malignant pleural mesothelioma (MPM) patients having surgery are imprecisely predicted by histopathology and intraoperative staging. We hypothesized that gene expression profiles could predict time to progression and survival in surgically cytoreduced pleural mesothelioma of all stages.Experimental Design: Gene expression analyses from 21 MPM patients having cytoreductions and identical postoperative adjuvant therapy were performed using the U95 Affymetrix gene chip. Using both dChip and SAM, neural networks constructed a common 27 gene classifier, which was associated with either the high-risk and low-risk group of patients. Data were validated using real-time PCR and immunohistochemical staining. The 27 gene classifier was also used for validation in a separate set of 17 MPM patients from another institution.Results: The groups predicted by the gene classifier recapitulated the actual time to progression and survival of the test set with 95.2% accuracy using 10-fold cross-validation. Clinical outcomes were independent of histology, and heterogeneity of progression and survival in early stage patients was defined by the classifier. The gene classifier had a 76% accuracy in the separate validation set of MPMs.Conclusions: These data suggest that pretherapy gene expression analysis of mesothelioma biopsies may predict which patients may benefit from a surgical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.