The objective of this study was to evaluate dietary supplementation with different copper sulphate (CuSO ) forms on small intestine microanatomy and large intestine microbiota. Ninety weaned piglets were divided into three experimental groups: control diet (CTR), with no added CuSO and diets supplemented with 150 ppm of CuSO in protected (150P) and unprotected form (150UP). After 18 days of dietary treatment, six piglets per treatment were randomly selected and sacrificed. Duodenum villi length and crypt depths were higher (P < 0.001) in the animals fed 150UP than other groups. Glial fibrillary acidic protein (GFAP), a marker for enteric glial cells, was unaffected by dietary treatments. The total bacteria and Enterobacteriaceae bacteria counts were lower (P < 0.05) in cecum of animals fed 150P in comparison with the other two groups. In the colon the Streptococci spp were lower (P < 0.001) in both CuSO supplemented groups than controls. The obtained results revealed a modulation of intestinal structure and microbiota exerted by the studied CuSO dietary supplementation. The present data show that dietary supplementation with 150UP in the first period post-weaning may assist in restoring the gut morphology, improving duodenal structure.
A retrospective data analysis suggested that the levels of boar taint compounds depend on the polyunsaturated fatty acid (PUFA) level of the adipose tissue (AT) being significantly greater in the unsaturated AT. In addition, we recently reported that hydrolysable tannins (HTs) offered to entire males (EMs) reduce skatole and, to a greater extent, indole levels in the AT. Thus, the objective of the study was to determine the impact of HTs and a high dietary level of PUFA on growth performance and board taint compounds in EMs. In addition, the interaction between PUFA and HTs on gut microbiota and its link to intestinal skatole and indole production was investigated. At 25 kg BW, 44 EM originating from 11 litters were randomly assigned within litter to four dietary treatments. Two basal grower (25–60 kg BW) and finisher (60–105 kg BW) diets containing either 2% soy oil (H = high PUFA level) or 2% tallow (L = low PUFA level) were formulated. The H and L diets were either supplemented (H+/L+) or not (H−/L−) with 3% chestnut extract containing 50% HTs. The pigs had ad libitum access to the diets and were slaughtered at 170 days of age. The microbiota composition was investigated through the 16S rRNA gene sequences obtained by next-generation sequencing (Illumia MiSeq platform, San Diego, CA, USA) and analyzed with a specific packages in R, version 3.5.0. Regardless of the PUFA content, the EMs fed the H+ diets were 2% (p < 0.01) less feed efficient overall. This was due to the slower (p = 0.01) growth in the finisher period despite similar feed intake. Carcass characteristics were not affected by the diets. Regardless of HT feeding, the PUFA level in the AT of the H pigs was 10% greater (p = 0.05) than in the L pigs. The indole level tended (p = 0.08) to be 50% lower in the H+ group. Surprisingly, the pigs that were fed diet H− had greater skatole levels than those fed diet L−, with intermediate skatole levels in the H+ and L+. Independent of the PUFA level, the HTs decreased bacteria abundance and qualitatively affected the microbiota composition. In conclusion, these data do not confirm that boar taint compound levels were related to PUFA levels in the AT. However, HTs can be considered to be a promising alternative to conventional antibacterial additives, with no detrimental effects on pig gut health and with appealing properties for reducing the synthesis of the main components of boar taint.
The effect of pig dietary supplementation with an antioxidant mixture (AOX), containing vitamin E and verbascoside, on animal oxidative status, meat quality parameters, and shelf life of the longissimus dorsi (LD) muscle was examined. Seventy pigs with an average live weight of 95.2 ± 1.2 kg were selected and assigned to 2 dietary treatments. The control (CTR) group was fed a commercial diet, and the AOX group was fed the same diet supplemented with the AOX, containing vitamin E and verbascoside from Verbenaceae extract, for 45 d before slaughter. At the beginning and at the end of the trial, blood samples were collected to determine oxidative status, using the Kit Radicaux Libres test. At slaughter, carcass weight was recorded and LD muscles from 10 pigs per treatment were sampled. Physical, chemical, microbiological, and sensory parameters and oxidative stability of LD muscle were assessed for up to 21 d of storage at 4°C under modified atmosphere packaging. Dietary AOX positively affected ( < 0.05) oxidative status and carcass dressing percentage. The oxidative and color stability of the LD muscle were improved ( < 0.05) in the AOX group compared with the control. The sensory shelf life revealed that at 15 d of storage, meat from the AOX group was comparable ( < 0.05) to the fresh meat in appearance and aroma. A lower ( < 0.05) spp. load was observed in the AOX samples than in the control samples. No other microbiological parameters were affected by dietary treatment. Overall, the present data showed that dietary AOX supplementation in pigs improved in vivo antioxidant status and exerted antioxidant and antimicrobial effects, thus enhancing the shelf life of raw pork under commercial conditions.
Dietary plant extract, containing verbascoside, can be considered as a natural source of antioxidants, and is also able to improve oxidative stability of donkey meat and to affect the sensory attributes of Equidae meat. © 2017 Society of Chemical Industry.
Marine macroalgae could be an important supplement in animal nutrition for their health-promoting effects. In recent years, the search of natural substances as substitutes of prophylactic antibiotics increased. Seaweeds, in particular brown algae, possess distinctive compounds such as laminarin and fucoidan, studied for their biologically active functions. Recent studies have shown that these bioactive components can positively affect the health and wellbeing improving intestinal mucosa metabolism, and have anti-microbial, anti-inflammatory and immunomodulatory effects. The present work is focuses on the health-promoting activities of seaweeds, in particular brown algae, as swine dietary supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.