Wound healing (WH) proceeds through four distinct phases: hemostasis, inflammation, proliferation, and remodeling. Impaired WH may be the consequence of the alteration of one of these phases and represents a significant health and economic burden to millions of individuals. Thus, new therapeutic strategies are the topics of intense research worldwide. Although radiofrequency electromagnetic field (RF-EMF) has many medical applications in rehabilitation, pain associated with musculoskeletal disorders, and degenerative joint disorders, its impact on WH is not fully understood. The process of WH begins just after injury and continues during the inflammatory and proliferative phases. A thorough understanding of the mechanisms by which RF-EMF can improve WH is required before it can be used as a non-invasive, inexpensive, and easily self-applicable therapeutic strategy. Thus, the aim of this study is to explore the therapeutic potential of different exposure setups of RF-EMF to drive faster healing, evaluating the keratinocytes migration, cytokines, and matrix metalloproteinases (MMPs) expression. The results showed that RF-EMF treatment promotes keratinocytes’ migration and regulates the expression of genes involved in healing, such as MMPs, tissue inhibitors of metalloproteinases, and pro/anti-inflammatory cytokines, to improve WH.
Background: To date, much evidence has shown theincreased interest in natural molecules and traditional herbal medicine as alternative bioactive compounds to fight many inflammatory conditions, both in relation to immunomodulation and in terms of their wound healing potential. Bacopa monnieri is a herb that is used in the Ayurvedic medicine tradition for its anti-inflammatory activity. Objective: In this study, we evaluate the anti-inflammatory and regenerative properties of the Bacopa monnieri extract (BME) in vitro model of neuroinflammation. Methods: Neuronal SH-SY5Y cells were stimulated with TNF and IFN and used to evaluate the effect of BME on cell viability, cytotoxicity, cytokine gene expression, and healing rate. Results: Our results showed that BME protects against the Okadaic acid-induced cytotoxicity in SH-SY5Y cells. Moreover, in TNF and IFN primed cells, BME reduces IL-1, IL-6, COX-2, and iNOS, mitigates the mechanical trauma injury-induced damage, and accelerates the healing of wounds. Conclusion: This study indicates that BME might become a promising candidate for the treatment of neuroinflammation.
<abstract> <p>Wound healing (WH) is a fundamental physiological process to keep the integrity of the skin, therefore impaired and chronic WH is a common and severe medical problem and represent one of the biggest challenges of public health. The resolution of the WH inflammatory phase is characterized by a complex series of events that involves many cellular types, especially neutrophils, macrophages and inflammatory mediators, which are crucial for a correct wound closure. MicroRNAs (miRNAs) play essential roles in wound repair. In fact, miR-142 is linked to inflammation modulating neutrophils' chemotaxis and polarization, while the polarization of M1 toward the M2 phenotype is driven by miR-223 and miR-132 is linked to chemokines and cytokines that activate endothelial cells and attract leukocytes and peripheral cells to the damage site. Thus, understanding the dysregulation of miRNAs in WH will be decisive for the development of new and more effective therapies for the management of chronic wounds.</p> </abstract>
Background. Wound healing (WH) is a complex process involving several stages, such as hemostasis, inflammation, re-epithelialization, and remodeling. Many factors can impair WH, and different pharmacological approaches were studied to date, but the increase in antibiotic resistance, invasiveness, treatment duration, and high cost, have often hampered the resolution of the wound. In this study, we investigated the possible application of water-soluble carvacrol prodrugs (WSCPs) and hyaluronic acid (HA) and their formulations (WSCPs/HA) to improve WH and regulate the inflammatory response. Materials and methods. Firstly, the cytotoxicity of 0.1, 1 and 10 µg/mL of HA, WSCPs and WSCPs/HA formulations were evaluated on HaCaT cells and THP-1 cell lines. The ability of WSCPs/HA formulations to modulate wound repair was evaluated in an in vitro model of WH, using HaCaT cells at 6, 18, and 24 h. The expression of WH mediators, after wound closure was determined by qRT-PCR. Following, we polarized THP-1 cells in M1/M2-like macrophages and tested the anti-inflammatory properties of WSCPs/HA formulations. After, we tested the in vitro WH model for the effects of conditioned medium (CM) from M1/M2-like cells cultured in the presence of WSCPs/HA. Results. Results showed that WSCPs/HA formulations were able to significantly raise the wound closure rate, compared to the single constituents, promoting a complete wound closure after 18 h for WSCP1/HA (10 µg/mL) and after 24 h for WSCP2/HA (10 µg/mL), modulating the MMPs, TGFβ, and COX-2 gene expression. The effects of CM derived from M1/M2 polarized cells cultured in the presence of WSCPs/HA determined WH regulation, with a better ability of the WSCP2/HA formulation to modulate the time-dependent expression of reparative and inflammatory mediators. Conclusion. Our data underline the possible application of WSCPs/HA formulations as bioactive agents for the regulation of the wound repair process by the modulation of inflammatory and remodeling phases, affecting the activity of immune cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.