We study the Bergman complex B(M) of a matroid M: a polyhedral complex which arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of the Bergman complex of M is a geometric realization of the order complex of the proper part of its lattice of flats. In addition, we show that the Bergman fan B(K n ) of the graphical matroid of the complete graph K n is homeomorphic to the space of phylogenetic trees T n × R. This leads to a proof that the link of the origin in T n is homeomorphic to the order complex of the proper part of the partition lattice n .
Abstract. We investigate ideals in a polynomial ring which are generated by powers of linear forms. Such ideals are closely related to the theories of fat point ideals, Cox rings, and box splines.We pay special attention to a family of power ideals that arises naturally from a hyperplane arrangement A. We prove that their Hilbert series are determined by the combinatorics of A and can be computed from its Tutte polynomial. We also obtain formulas for the Hilbert series of certain closely related fat point ideals and zonotopal Cox rings.Our work unifies and generalizes results due to Dahmen-Micchelli, HoltzRon, Postnikov-Shapiro-Shapiro, and Sturmfels-Xu, among others. It also settles a conjecture of Holtz-Ron on the spline interpolation of functions on the lattice points of a zonotope.
We study the combinatorial properties of a tropical hyperplane arrangement. We define tropical oriented matroids, and prove that they share many of the properties of ordinary oriented matroids. We show that a tropical oriented matroid determines a subdivision of a product of two simplices, and conjecture that this correspondence is a bijection.
Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand-Tsetlin polytopes (1950) and the Feigin-Fourier-Littelmann-Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand-Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin-Fourier-Littelmann-Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras.
We describe an algorithm to compute the geodesics in an arbitrary CAT(0) cubical complex. A key tool is a correspondence between cubical complexes of global non-positive curvature and posets with inconsistent pairs. This correspondence also gives an explicit realization of such a complex as the state complex of a reconfigurable system, and a way to embed any interval in the integer lattice cubing of its dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.