Single-molecule magnets (SMMs) are among the most promising molecular systems for the development of novel molecular electronics based on the spin transport. Going beyond the investigations focused on physisorbed SMMs, in this work the robust grafting of Terbium(III) bis(phthalocyaninato) complexes to silicon surface from a diluted solution is achieved by rational chemical design yielding the formation of a partially oriented monolayer on the conducting substrate. Here, by exploiting the surface sensitivity of X-ray circular magnetic dichroism we evidence an enhancement of the magnetic bistability of this single-molecule magnet, in contrast to the dramatic reduction of the magnetic hysteresis that characterises monolayer deposits evaporated on noble and ferromagnetic metals. Photoelectron spectroscopy investigations and density functional theory analysis suggest a non-innocent role played by the silicon substrate, evidencing the potentiality of this approach for robust integration of bistable magnetic molecules in electronic devices.
The synthesis and the chemisorption from solution of a terbium bis-phthalocyaninato complex suitable for the functionalization of lanthanum strontium manganite (LSMO) are reported. Two phosphonate groups are introduced in the double decker structure in order to allow the grafting to the ferromagnetic substrate actively used as injection electrode in organic spin valve devices. The covalent bonding of functionalized terbium bis-phthalocyaninato system on LSMO surface preserves its molecular properties at the nanoscale. X-ray photoelectron spectroscopy confirms the integrity of the molecules on the LSMO surface and a small magnetic hysteresis reminiscent of the typical single molecule magnet behavior of this system is detected on surface by X-ray magnetic circular dichroism experiments. The effect of the hybrid magnetic electrode on spin polarized injection is investigated in vertical organic spin valve devices and compared to the behavior of similar spin valves embedding a single diamagnetic layer of alkyl phosphonate molecules analogously chemisorbed on LSMO. Magnetoresistance experiments have evidenced significant alterations of the magneto-transport by the terbium bisphthalocyaninato complex characterized by two distinct temperature regimes, below and above 50 K, respectively.
In this contribution, Fe3O4 magnetic nanoparticles (MNPs) have been functionalized with a tetraphosphonate cavitand receptor (Tiiii), capable of complexing N-monomethylated species with high selectivity, and polyethylene glycol (PEG) via click-chemistry. The grafting process is based on MNP pre-functionalization with a bifunctional phosphonic linker, 10-undecynylphosphonic acid, anchored on an iron surface through the phosphonic group. The Tiiii cavitand and the PEG modified with azide moieties have then been bonded to the resulting alkyne-functionalized MNPs through a "click" reaction. Each reaction step has been monitored by using X-ray photoelectron and FTIR spectroscopies. PEG and Tiiii functionalized MNPs have been able to load N-methyl ammonium salts such as the antitumor drug procarbazine hydrochloride and the neurotransmitter epinephrine hydrochloride and release them as free bases. In addition, the introduction of PEG moieties promoted biocompatibility of functionalized MNPs, thus allowing their use in biological environments.
Two novel triptycene quinoxaline cavitands (DiTriptyQxCav and MonoTriptyQxCav) have been designed, synthesized, and applied in the supramolecular detection of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air. The complexation properties of the two cavitands towards aromatics in the solid state are strengthened by the presence of the triptycene moieties at the upper rim of the tetraquinoxaline walls, promoting the confinement of the aromatic hydrocarbons within the cavity. The two cavitands were used as fiber coatings for solid-phase microextraction (SPME) BTEX monitoring in air. The best performances in terms of enrichment factors, selectivity, and LOD (limit of detection) values were obtained by using the DiTriptyQxCav coating. The corresponding SPME fiber was successfully tested under real urban monitoring conditions, outperforming the commercial divinylbenzene-Carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber in BTEX adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.