The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8 + T-cells are critical in the natural and cART-induced control of viral replication; however, CD8 + T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8 + T-cell subsets, such as interleukin-17-producing and follicular CXCR5 + CD8 + T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8 + T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8 + T-cells antiviral function. We also address the potential usefulness of CD8 + T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8 + T-cells for HIV cure strategies.
Immune activation is the hallmark of HIV infection, even in patients with highly active anti-retroviral therapy (HAART)-induced viral suppression. A major cause of immune activation during HIV infection is the intestinal microbial translocation as a consequence, among other factors, of the decrease and/or dysfunction of interleukin (IL)-17-producing T-cells, due to their role promoting the integrity of the intestinal barrier. A population of IL-17-producing CD8+ T-cells (Tc17 cells), characterized by the expression of CD161, has been described, but its relation with the persistent immune activation in non-viremic people living with HIV (PLWH) on HAART is unclear. By flow cytometry, we characterized the activation phenotype (evaluated by the expression of HLA-DR and CD38) of circulating CD161-expressing CD8+ T-cells; in addition, we explored the functionality of polyclonally-stimulated Tc17 cells in PLWH under HAART-induced viral suppression, and in healthy individuals. Finally, we determined the association of Tc17 cells with the expression of cellular and soluble activation markers. Circulating CD161-expressing CD8+ T-cells were decreased in PLWH compared with healthy individuals, despite their similar basal activation state. After polyclonal stimulation, IL-17 production was higher in CD8+ T-cells co-expressing HLA-DR and CD38 in healthy individuals. In contrast, although PLWH had a higher frequency of HLA-DR+ CD38+ CD8+ T-cells after stimulation, they had a lower production of IL-17. Interferon (IFN)-γ-producing CD8+ T-cells (Tc1 cells) were increased in PLWH. The low Tc17 cells response was associated with a high expression of CD38 and programmed death 1 protein, high levels of soluble CD14 and the treatment duration. Finally, to explore potential immunomodulatory strategies, the in vitro effect of the anti-inflammatory agent sulfasalazine was assessed on Tc17 cells. Interestingly, a decreased inflammatory environment, death of activated CD8+ T-cells, and an increased frequency of Tc17 cells were observed with sulfasalazine treatment. Thus, our findings suggest that activated CD8+ T-cells have a marked capacity to produce IL-17 in healthy individuals, but not in PLWH, despite HAART. This dysfunction of Tc17 cells is associated with the persistent immune activation observed in these patients, and can be partially restored by anti-inflammatory agents.
Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus. Low levels of immune activation and waning HIV-1-specific humoral and cellular immune responses indicated a lack of ongoing antigen production. Four years after analytical treatment interruption, the absence of a viral rebound and the lack of immunological correlates of HIV-1 antigen persistence are strong evidence for HIV-1 cure after CCR5Δ32/Δ32 HSCT.
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.