The European Green Deal aims to transform the EU into a modern, resource-efficient, and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore, the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g., fuel cells for propulsion) have already been implemented on board ships in the last 20 years, mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However, this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward, a review of the implementation of liquid hydrogen (LH2) in the transportation sector including aerospace and aviation industries, automotive, and railways is provided. Then, the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study, from LH2 bunkering, onboard utilization, regulations, codes and standards, and safety. Finally, this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
The Energy System lab at the University of Trieste has carried out a study to investigate the reduction in performance of high temperature polymer electrolyte membrane (HTPEM) fuel cell membrane electrode assemblies (MEAs) when subjected to different ageing tests. In this study, start and stop cycles, load cycles, open circuit voltage (OCV) permanence and constant load profile were considered. Polarization curves (PC) together with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) data were recorded during the ageing tests to assess the fuel cell performance. In this paper, experimental data are presented to confirm the test methodology previously proposed by the authors and to quantitatively correlate the performance degradation to the operational profiles. It was demonstrated that OCV condition, start and stop and load cycling increase degradation of the MEAs with respect to constant load operation. As expected, the OCV is the operational condition that influences performance degradation the most. Finally, the MEAs were analyzed with synchrotron small angle X-ray scattering (SAXS) technique at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste to analyze the nano-morphological catalyst evolution. As for the catalyst morphology evolution, the ex situ SAXS methodology proposed by the authors is confirmed in its ability to assess the catalyst nanoparticles aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.