Disturbed homeostasis of gut microbiota has been suggested to be closely associated with 5-fluorouracil (5-Fu) induced mucositis. However, current knowledge of the overall profiles of 5-Fu-disturbed gut microbiota is limited, and so far there is no direct convincing evidence proving the causality between 5-Fu-disturbed microbiota and colonic mucositis. In mice, in agreement with previous reports, 5-Fu resulted in severe colonic mucositis indicated by weight loss, diarrhea, bloody stool, shortened colon, and infiltration of inflammatory cells. It significantly changed the profiles of inflammatory cytokines/chemokines in serum and colon. Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and VE-Cadherin were increased. While tight junction protein occludin was reduced, however, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were increased in colonic tissues of 5-Fu treated mice. Meanwhile, inflammation related signaling pathways including NF-κB and mitogen activated protein kinase (MAPKs) in the colon were activated. Further study disclosed that 5-Fu diminished bacterial community richness and diversity, leading to the relative lower abundance of Firmicutes and decreased Firmicutes/Bacteroidetes (F/B) ratio in feces and cecum contents. 5-Fu also reduced the proportion of Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division TM7, but increased that of Verrucomicrobia and Actinobacteria in feces and/or cecum contents. The fecal transplant from healthy mice prevented body weight loss and colon shortening of 5-Fu treated mice. In addition, the fecal transplant from 5-Fu treated mice reduced body weight and colon length of vancomycin-pretreated mice. Taken together, our study demonstrated that gut microbiota was actively involved in the pathological process of 5-Fu induced intestinal mucositis, suggesting potential attenuation of 5-Fu induced intestinal mucositis by manipulating gut microbiota homeostasis.
Background Cardamonin, a chalcone isolated from Alpiniae katsumadai , has anti-inflammatory and anti-tumor activities. However, the molecular mechanism by which cardamonin inhibits breast cancer progression largely remains to be determined. Methods CCK-8 and Hoechst 33258 staining were used to detect cell growth and apoptosis, respectively. HIF-1α driven transcription was measured by luciferase reporter assay. Glucose uptake and lactate content were detected with 2-NBDG and L-Lactate Assay Kit. Cell metabolism assays were performed on Agilent’s Seahorse Bioscience XF96 Extracellular Flux Analyzer. Mitochondrial membrane potential was measured with JC-1 probe. DCFH-DA was used to measure ROS level. Protein expression was detected by western blotting assay. Immunohistochemistry was performed to measure the expression of HIF-1α, LDHA and CD31 in tumor tissues. Results Cardamonin inhibited growth of the triple negative breast cancer cell line MDA-MB-231 in vitro and in vivo by suppressing HIF-1α mediated cell metabolism. Cardamonin inhibited the expression of HIF-1α at mRNA and protein levels by repressing the mTOR/p70S6K pathway, and subsequently enhanced mitochondrial oxidative phosphorylation and induced reactive oxygen species (ROS) accumulation. We also found that cardamonin inhibited the Nrf2-dependent ROS scavenging system which further increased intracellular ROS levels. Eventually, accumulation of the intracellular ROS induced apoptosis in breast cancer cells. In addition, cardamonin treatment reduced glucose uptake as well as lactic acid production and efflux, suggesting its function in repressing the glycolysis process. Conclusions These results reveal novel function of cardamonin in modulating cancer cell metabolism and suppressing breast cancer progression, and suggest its potential for breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1351-4) contains supplementary material, which is available to authorized users.
Anxiety and depression are highly prevalent mental illnesses worldwide and have long been thought to be closely associated to neurotransmitter modulation. There is growing evidence indicating that changes in the composition of the gut microbiota are related to mental health including anxiety and depression. In this review, we focus on combining the intestinal microbiota with serotonergic, dopaminergic, and noradrenergic neurotransmission in brain, with special emphasis on the anxiety- and depression-like behaviors in stress-related rodent models. Therefore, we reviewed studies conducted on germ-free rodents, or in animals subjected to microbiota absence using antibiotics, as well as via the usage of probiotics. All the results strongly support that the brain neurotransmitter modulation by gut microbiota is indispensable to the physiopathology of anxiety and depression. However, a lot of work is needed to determine how gut microbiota mediated neurotransmission in human brain has any physiological significance and, if any, how it can be used in therapy. Overall, the gut microbiota provides a novel way to alter neurotransmitter modulation in the brain and treat gut–brain axis diseases, such as anxiety and depression.
Background and Purpose: Sleep deprivation compromises learning and memory in both humans and animals, and can be reversed by administration of modafinil, a drug promoting wakefulness. Dysfunctional autophagy increases activation of apoptotic cascades, ultimately leading to increased neuronal death, which can be alleviated by autophagy inhibitors. This study aimed to investigate the alleviative effect and mechanism of modafinil on the excessive autophagy occurring in the hippocampus of mice with deficiency of learning and memory induced by sleep deprivation. Experimental Approach: The Morris water maze was used to assess the effects of modafinil on male C57BL/6Slac mice after 48-hr sleep deprivation. The HT-22 hippocampal neuronal cell line was also used. Nissl staining, transmission electron microscope, immunofluorescence, Western blot, transient transfection, and autophagy inducer were used to study the effect and mechanism of modafinil on hippocampal neurons with excessive autophagy and apoptosis. Key Results: Modafinil improved learning and memory in sleep-deprived mice, associated with the inhibition of excessive autophage and apoptosis and an enhanced activation of the PI3K/Akt/mTOR/P70S6K signalling pathway in hippocampal neurons. These effects of modafinil were abolished by rapamycin. In addition, modafinil suppressed the aberrant autophagy and apoptosis induced by rapamycin and reactivated PI3K/Akt/mTOR/P70S6K signals in HT-22 cells. Conclusions and Implications: These results suggested that modafinil alleviated impaired learning and memory of sleep-deprived mice potentially by suppressing excessive autophagy and apoptosis of hippocampal neurons. This novel mechanism may add to our knowledge of modafinil in the clinical treatment of impaired memory caused by sleep loss.Abbreviations: DG, dentate gyrus; 3-MA, 3-methyladenine; mTOR, mammalian target of rapamycin; MWM, Morris water maze; p62, ubiquitin-binding protein p62 or sequestosome-1; P70S6K, ribosomal protein S6 kinase; p-Akt, phosphorylated PKB; p-P70S6K, phosphorylated ribosomal protein S6 kinase; p-PI3K, phosphorylated PI3K
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.