Cast thin section observation, scanning electron microscopy (SEM), high‐pressure mercury injection (HPMI), and nuclear magnetic resonance (NMR) were used to examine the microstructure of tight carbonate reservoirs in the Lower Jurassic Da'anzhai Member, the central Sichuan Basin. The pore space in the Da'anzhai Member is classified into 2 types and 17 subtypes, with nano‐scale pore throats of ‘O’, ‘S’, ‘Z’, and ‘I’ shapes. Poorly sorted pore throats vary greatly in diameter; thus, it is difficult for fluid flow to pass through these pore throats. There are three classes of pore throats in carbonate reservoirs, i.e. isolated pores, pores coexisting with fractures, and large pores and fractures. Isolated pores may provide some pore space, but the permeability is low. Pores and fractures coexisting in the reservoir may have a great impact on porosity and permeability; they are the major pore space in the reservoir. Large pores and fractures have a great impact on reservoir properties, but they only account for a limited proportion of total pore space. The microstructure of Da'anzhai reservoirs, which dominates fluid mobility, is dependent on sedimentary environment, diagenesis, and tectonic process. Pore structure is related to sedimentary environment. The occurrence of microfractures, which may improve reservoir properties, is dependent on tectonic process. Diageneses are of utmost importance to pore evolution, cementation and growth of minerals have played an important role in destroying reservoir microstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.