Light management is of paramount importance to improve the performance of optoelectronic devices including photodetectors, solar cells, and light-emitting diodes. Extensive studies have shown that the efficiency of these optoelectronic devices largely depends on the device structural design. In the case of solar cells, threedimensional (3-D) nanostructures can remarkably improve device energy conversion efficiency via various light-trapping mechanisms, and a number of nanostructures were fabricated and exhibited tremendous potential for highly efficient photovoltaics. Meanwhile, these optical absorption enhancement schemes can benefit photodetectors by achieving higher quantum efficiency and photon extraction efficiency. On the other hand, low extraction efficiency of a photon from the emissive layer to outside often puts a constraint on the external quantum efficiency (EQE) of LEDs. In this regard, different designs of device configuration based on nanostructured materials such as nanoparticles and nanotextures were developed to improve the out-coupling efficiency of photons in LEDs under various frameworks such as waveguides, plasmonic theory, and so forth. In this Perspective, we aim to provide a comprehensive review of the recent progress of research on various light management nanostructures and their potency to improve performance of optoelectronic devices including photodetectors, solar cells, and LEDs. O ptoelectronic devices, such as photodetectors, solar cells, and light-emitting diodes (LEDs), are essentially light to electricity or vice versa energy conversion devices. Utilization of efficient optoelectronic devices cannot only produce clean energy but can also help with energy conservation. Recent extensive studies have shown that the efficiency of these optoelectronic devices largely depends on the device structural design. In the case of solar cells, which involve conversion from solar radiation to electricity, it has been discovered that nanostructures can remarkably improve the energy conversion efficiency via various light-trapping mechanisms. Therefore, a number of nanostructures including nanowires, nanopillars, nanoholes, and so forth were fabricated, and their effectiveness for photovoltaic (PV) performance improvement has been examined based on different material systems. Meanwhile, these optical absorption enhancement schemes can benefit photodetectors as well. It is worth pointing out that due to the different application scale requirement, low-cost approaches are desired for effective light management in PV applications. However, performance is the primary concern for photodetectors in most circumstances. On the other hand, a LED is a device that converts electrical energy to optical radiation. High quantum efficiency and photon extraction efficiency not only help energy conservation but also minimize the overheating of the device, thus prolonging its lifetime. In recent decades, numerous material systems and techniques were extensively studied to improve the internal quantum ...
InAs nanowires have been extensively studied for high-speed and high-frequency electronics due to the low effective electron mass and corresponding high carrier mobility. However, further applications still suffer from the significant leakage current in InAs nanowire devices arising from the small electronic band gap. Here, we demonstrate the successful synthesis of ternary InGaAs nanowires in order to tackle this leakage issue utilizing the larger band gap material but at the same time not sacrificing the high electron mobility. In this work, we adapt a two-step growth method on amorphous SiO(2)/Si substrates which significantly reduces the kinked morphology and surface coating along the nanowires. The grown nanowires exhibit excellent crystallinity and uniform stoichiometric composition along the entire length of the nanowires. More importantly, the electrical properties of those nanowires are found to be remarkably impressive with I(ON)/I(OFF) ratio >10(5), field-effect mobility of ∼2700 cm(2)/(V·s), and ON current density of ∼0.9 mA/μm. These nanowires are then employed in the contact printing and achieve large-scale assembly of nanowire parallel arrays which further illustrate the potential for utilizing these high-performance nanowires on substrates for the fabrication of future integrated circuits.
Controlling the crystal quality and growth orientation of high performance III–V compound semiconductor nanowires (NWs) in a large-scale synthesis is still challenging, which could restrict the implementation of nanowires for practical applications. Here we present a facile approach to control the crystal structure, defects, orientation, growth rate and density of GaAs NWs via a supersaturation-controlled engineering process by tailoring the chemical composition and dimension of starting Au x Ga y catalysts. For the high Ga supersaturation (catalyst diameter < 40 nm), NWs can be manipulated to grow unidirectionally along ⟨111⟩ with the pure zinc blende phase with a high growth rate, density and minimal amount of defect concentration utilizing the low-melting-point catalytic alloys (AuGa, Au2Ga, and Au7Ga3 with Ga atomic concentration > 30%), whereas for the low Ga supersaturation (catalyst diameter > 40 nm), NWs are grown inevitably with a mixed crystal orientation and high concentration of defects from high-melting-point alloys (Au7Ga2 with Ga atomic concentration < 30%). In addition to the complicated control of processing parameters, the ability to tune the composition of catalytic alloys by tailoring the starting Au film thickness demonstrates a versatile approach to control the crystal quality and orientation for the uniform NW growth.
Due to the unique optical properties, three-dimensional arrays of silicon nanostructures have attracted increasing attention as the efficient photon harvesters for various technological applications. In this work, instead of dry etching, we have utilized our newly developed wet anisotropic etching to fabricate silicon nanostructured arrays with different well-controlled geometrical morphologies, ranging from nanopillars, nanorods, and inverted nanopencils to nanocones, followed by systematic investigations of their photon-capturing properties combining experiments and simulations. It is revealed that optical properties of these nanoarrays are predominantly dictated by their geometrical factors including the structural pitch, material filling ratio, and aspect ratio. Surprisingly, along with the proper geometrical design, the inverted nanopencil arrays can couple incident photons into optical modes in the pencil base efficiently in order to achieve excellent broadband and omnidirectional light-harvesting performances even with the substrate thickness down to 10 μm, which are comparable to the costly and technically difficult to achieve nanocone counterparts. Notably, the fabricated nanopencils with both 800 and 380 nm base diameters can suppress the optical reflection well below 5% over a broad wavelength of 400-1000 nm and a wide angle of incidence between 0 and 60°. All these findings not only offer additional insight into the light-trapping mechanism in these complex 3D nanophotonic structures but also provide efficient broadband and omnidirectional photon harvesters for next-generation cost-effective ultrathin nanostructured photovoltaics.
Due to the extraordinary large surface-to-volume ratio, surface effects on semiconductor nanowires have been extensively investigated in recent years for various technological applications. Here, we present a facile interface trapping approach to alter electronic transport properties of GaAs nanowires as a function of diameter utilizing the acceptor-like defect states located between the intrinsic nanowire and its amorphous native oxide shell. Using a nanowire field-effect transistor (FET) device structure, p- to n-channel switching behaviors have been achieved with increasing NW diameters. Interestingly, this oxide interface is shown to induce a space-charge layer penetrating deep into the thin nanowire to deplete all electrons, leading to inversion and thus p-type conduction as compared to the thick and intrinsically n-type GaAs NWs. More generally, all of these might also be applicable to other nanowire material systems with similar interface trapping effects; therefore, careful device design considerations are required for achieving the optimal nanowire device performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.