d-chiro-Inositol (DCI) is a biologically active component found in tartary buckwheat, which can reduce hyperglycemia and ameliorate insulin resistance. However, the mechanism underlying the antidiabetic effects of DCI remains largely unclear. This study investigated the effects and underlying molecular mechanisms of DCI on hepatic gluconeogenesis in mice fed a high fat diet and saturated palmitic acid-treated hepatocytes. DCI attenuated free fatty acid uptake by the liver via lipid trafficking inhibition, reduced diacylglycerol deposition, and hepatic PKCε translocation. Thus, DCI could improve insulin sensitivity by suppressing hepatic gluconeogenesis. Subsequent analyses revealed that DCI decreased hepatic glucose output and the expression levels of PEPCK and G6 Pase in insulin resistant mice through PKCε-IRS/PI3K/AKT signaling pathway. Likewise, such effects of DCI were confirmed in HepG2 cells with palmitate-induced insulin resistance. These findings indicate a novel pathway by which DCI prevents hepatic gluconeogenesis, reduces lipid deposition, and ameliorates insulin resistance via regulation of PKCε-PI3K/AKT axis.
As one of the main metabolites of anthocyanin, protocatechuic acid (PCA) possesses strong antioxidant activity.In the present study, we explored the capacity of PCA on the alleviation of endothelial oxidative stress and investigated the underlying mechanisms using RNA sequencing (RNA-Seq). In comparison with palmitic acid (PA)-treated cells, PCA (100 μM) significantly decreased the generations of 3-nitrotyrosine (3-NT) and 8-hydroxydeoxyguanosine (8-OHdG) (0.82 ± 0.01 vs 1.16 ± 0.05 and 0.80 ± 0.01 vs 1.48 ± 0.15, respectively, p < 0.01), two biomarkers of oxidative damage, and restored the levels of nitric oxide (NO) (0.97 ± 0.04 vs 0.54 ± 0.02, p < 0.01) and mitochondrial membrane potential (MMP) (0.96 ± 0.03 vs 0.86 ± 0.02, p < 0.01) in human umbilical vein endothelial cells (HUVECs). PCA also obviously reduced the level of reactive oxygen species (ROS) (0.86 ± 0.15 vs 2.67 ± 0.09, p < 0.01) in aorta from high-fat diet (HFD)-fed mice. RNA-Seq and Western blot analysis indicated that PCA markedly reduced the expression of cluster of differentiation 36 (CD36), a membrane fatty acid transporter, and reduced the generations of adenosine triphosphate (ATP) and acetyl coenzyme A (Ac-CoA). These effects of PCA were associated with decreased level of acetylated-lysine and restored the activity of manganese-dependent superoxide dismutase (MnSOD) through reducing the generation of Ac-CoA or activating Sirt1 and Sirt3 via a CD36/AMPkinase (AMPK) dependent pathway.
Agaricus blazei Murill (ABM) is a common anticancer folk remedy. Its active ingredients, i.e., polysaccharides, have been isolated and exhibit indirect tumor-suppressing activity via immunological activation. The effects of polysaccharides derived from A. blazei Murill (ABMP) on RAW 264.7 cells were examined by western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). The effects of 500, 1000, and 2000 μg mL ABMP on the growth of RAW 264.7 cells were evaluated by measuring the OD value; the optimum concentration was found to be 1000 μg mL. Based on the RT-PCR results, the expression levels of JNK, ERK, and p38 decreased substantially in lipopolysaccharide (LPS)-induced RAW 264.7 cells treated with ABMP. In RAW 264.7 cells treated with LPS, the protein expression levels of JNK, ERK, and p38 were decreased, as were the levels of phosphorylated JNK, ERK, and p38. These results indicate that the MAPK signal transduction pathway is a potential mechanism by which ABMP regulates the cell-mediated immunity of RAW 264.7 cells.
Reliable photovoltaic(PV) forecasting can provide important data support for power system operation, which is the key to realize the large-scale consumption of solar energy resources. PV forecasting task becomes crucial to ensure power system stability and economic operation. This paper reviews the existing research of PV forecasting methods from the perspective of multi-temporal scale and multi-spatial scale. Firstly, according to the forecasting process, demand, temporal and spatial scale, the forecasting methods are classified and the evaluation indicators involved in the research are listed. Secondly, based on the temporal scale of PV power generation, the results are combed through the three kind of scale of ultra-short-term, short-term and medium and long-term prediction. Thirdly, on each kind of temporal scale, the results are subdivided into single-site prediction and regional prediction to sort out in detail. Finally, the results are analyzed on the basis of the predicted temporal scale, spatial scale and input data. It has been observed that most recent papers highlight the importance of short-term predictions. The machine learning method shows excellent nonlinear description ability in short-term prediction, the prediction results are satisfactory. The spatial average effect of regional prediction reduces the variability of solar energy, the prediction results are reliable.
Background Sparassis crispa polysaccharides (SCPs) have multiple pharmacological activities. Fermentation characteristics of SCPs and its effects on the intestinal microbes in mice remain inconclusive. Results In this study, SCPs were fermented by the human feces and used to administer the Kunming mice to explore the fermentation characteristics of SCPs in the intestinal tract and the effects on the intestinal microbes in mice. Results from in vitro experiments revealed that SCPs were utilized by intestinal microbiota to produce short-chain fatty acids (SCFAs). The specific monosaccharide composition of SCPs determines which SCFAs are produced. Furthermore, the colon index and villi length of the SCPs-treated mice were significantly higher compared with the control group. In addition, SCPs exhibited beneficial effect on the relative abundance and diversity of dominant bacteria in the intestinal tract, such as increasing Bacteroidetes/Firmicutes ratio and up-regulating SCFA-producing bacteria, including Bacteroidales_S24-7_group, Alloprevotella, Alistipes, Bacteroides, Butyricimonas, Parabacteroides, Lachnospiraceae_NK4A136_group and Oscillibacter. SCPs increased the abundance of genes in carbohydrate, amino acid, and energy metabolism. Conclusion Our results indicate SCPs can improve the physiological indices of the colon in mice, which is likely to be associated with the increase in the relative abundance and diversity of SCFA-producing bacteria and SCFAs level produced by intestinal microbiota. Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.