The 2016–2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species’ survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.
Peste des petits ruminants virus (PPRV) is a significant pathogen of small ruminants and is prevalent in much of Africa, the Near and Middle East and Asia. Despite the availability of an efficacious and cheap live-attenuated vaccine, the virus has continued to spread, with its range stretching from Morocco in the west to China and Mongolia in the east. Some of the world's poorest communities rely on small ruminant farming for subsistence and the continued endemicity of PPRV is a constant threat to their livelihoods. Moreover, PPRV's effects on the world's population are felt broadly across many economic, agricultural and social situations. This far-reaching impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) to develop a global strategy for the eradication of this virus and its disease. PPRV is a morbillivirus and, given the experience of these organizations in eradicating the related rinderpest virus, the eradication of PPRV should be feasible. However, there are many critical areas where basic and applied virological research concerning PPRV is lacking. The purpose of this review is to highlight areas where new research could be performed in order to guide and facilitate the eradication programme. These areas include studies on disease transmission and epidemiology, the existence of wildlife reservoirs and the development of next-generation vaccines and diagnostics. With the support of the international virology community, the successful eradication of PPRV can be achieved.
Peste des petits ruminants (PPR) is a highly contagious, economically important viral disease of small ruminants, targeted for global eradication by the year 2030. The recent geographic surge in PPR virus distribution, economic implications, the success of the rinderpest eradication campaign, and ongoing national/regional efforts convinced the FAO and OIE to initiate a global PPR control and eradication strategy. Since its discovery, a series of diagnostic tools have been developed for detecting PPR virus and virus-specific antibodies. Furthermore, it is understood that diagnostic and vaccine-monitoring tools are inevitable components of the four-stage strategy of global PPR eradication from assessment to the post-eradication phase. However, these tools may not be suitable for all stages of PPR control and eradication. For instance, diagnostics such as ELISA could be used for mass screening of clinical and serum samples, whereas immunochromatographic tests can be used at the field level as a pen-side test. Yet, assays with higher sensitivity, such as RT-PCR, RT-PCR ELISA, real-time RT-PCR and LAMP are important for early diagnosis of PPR and also, theoretically, during the late stages of eradication or when sampling non-natural hosts. Moreover, during the later stages of any control program, suspected/doubtful outbreaks will have to be reconfirmed using multiple laboratory tests. Hence, diagnostics can and should be efficiently applied at different stages of the PPR control and eradication campaign based on available resources and the number of samples to be tested. This article provides an overview of the various PPR diagnostic tools and suggests where and how they should be logically applied during the different phases of global PPR control and eradication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.