Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution.
We established a system to generate hiPSC-derived hepatobiliary organoids in vitro. To varying degrees, this model recapitulated several key aspects of hepatobiliary organogenesis. The hepatobiliary organoids displayed a series of hepatic and biliary functional attributes. This system does not rely on any exogenous cells or genetic manipulation.
An alternative adaptive-immune system is present in the most basal vertebrates--lampreys and hagfish--the only surviving jawless vertebrates. These eel-like fish use leucine-rich repeat-based receptors for Ag recognition instead of the Ig-based receptors used in jawed vertebrates. We report that in Japanese lamprey (Lampetra japonica), variable lymphocyte receptor (VLR)B interacts with C1q and C3 proteins to mediate complement-dependent cytotoxicity for bacteria and tumor cells. The immune-based lysis involves deposition of VLRB and C1q-like protein complex on the surface of target cells, activation of C3, and ultimate disruption of cell wall integrity. The demonstration of functional interaction between VLRB and complement components in lamprey provides evidence for the emergence of cooperative innate and adaptive-immune responses at a pivotal point in vertebrate evolution, before or in parallel with the evolution of Ig-based Abs and the classical complement-activation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.