We developed a new type of wire-grid polarizer that has achieved excellent optical performance and reliability. The nanowire-grid polarizer is based on a fully optimized innovative design structure that consists of not only the core nanowire grid but also the surrounding multilayer thin-film structures. The surrounding structures are designed for antireflectivity to provide the best possible efficiency as well as for device reliability to provide the best possible handling robustness and environmental durability. The core nanowire grid utilizes nanosized high-aspect-ratio dielectric walls as a support for forming a high-aspect-ratio metal nanowire grid that significantly reduces energy loss as a result of metal absorption for the transmitted beam while providing a high extinction ratio of the blocked beam. The developed high-quality nanowire-grid polarizer has potential for use in many integrated optical applications.
Widespread soil acidification due to atmospheric acid deposition and agricultural fertilization may greatly accelerate soil carbonate dissolution and CO2 release. However, to date, few studies have addressed these processes. Here, we use meta-analysis and nationwide-survey datasets to investigate changes in the soil inorganic carbon (SIC) stocks in China. We observe an overall decrease in the SIC stocks in topsoil (0-30 cm) (11.33 g C m–2 yr–1) during the 1980 s and 2010 s. The total SIC stocks have decreased by approximately 8.99 ± 2.24% (1.37 ± 0.37 Pg C). The average SIC losses across China (0.046 Pg C yr–1) and in cropland (0.016 Pg C yr–1) account for approximately 17.6–24.0% of the terrestrial C sink and 57.1% of the soil organic carbon sink in cropland, respectively. Nitrogen deposition and climate change have profound influences on SIC cycling. We estimate that approximately 19.12–19.47% of the SIC stocks will be further lost by 2100. The consumption of SIC may offset a large portion of the global efforts aimed at ecosystem carbon sequestration, which emphasizes the importance of better understanding the indirect coupling mechanisms of nitrogen and carbon cycling and of effective countermeasures to minimize SIC loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.