We investigated the effect of different gradient doping methods on the charge collection efficiency of the electron multiplication layer of EBCMOS devices. Exponential doping of the electron multiplication layer can form a built-in electric field in the electron multiplication layer that is favorable for photoelectron transport, so exponential doping instead of uniform doping in the electron multiplication layer of EBCMOS can effectively improve the charge collection efficiency. It is shown that exponential heavy doping on the side of the electron multiplication layer near the dead layer and exponential light doping on the side near the depletion region can improve the built-in electric field structure and increase the lifetime of the multiplied electrons, thereby improving the charge collection efficiency of EBCMOS. The optimized device achieves a charge collection efficiency of 94.48% at an incident electron energy of 4 keV, an electron beam diameter of 20 nm, a dead layer thickness of 60 nm, and a P-type silicon epitaxial layer thickness of 10 μm.
In order to improve the charge collection efficiency, we simulated and experimentally tested the doping structure of the electron multiplication layer in EBCMOS. In this paper, we simulate the charge collection efficiency of EBCMOS under different doping methods by modeling the collisional scattering of electrons with solid atoms in semiconductor materials and combining the transport trajectories of electrons in the electron multiplication layer, the simulation results indicate that using a layered doping structure to reduce the thickness of the index heavily doped layer can effectively optimize the electric field distribution in the electron multiplier layer and reduce the recombination rate of electrons. The optimized doping structure has a significant effect on improving charge collection efficiency. Based on the simulation results, doped samples were prepared and tested. The test results showed that the charge collection efficiency obtained under the condition of a P-type silicon substrate thickness of 7μm and an index heavily doped layer thickness of 1μm was 72.65%, reducing the thickness of the index heavily doped layer to 0.1μm, the charge collection efficiency obtained can reach 86.27%, which proves that reducing the thickness of the index heavily doped layer can effectively improve the charge collection efficiency of EBCMOS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.