PurposeTo explore the value of F-NLR-AGR score based on preoperative fibrinogen, neutrophil to lymphocyte ratio (NLR), and albumin to globulin ratio (AGR) in predicting the prognosis in patients with glioma.Patients and methods203 glioma patients were retrospectively analyzed. Receiver-operating characteristic (ROC) curve analysis was used to determine the optimal cut-off values for NLR, AGR, and fibrinogen. According to these cut-off values, patients with high NLR (>1.90), low AGR (<1.54), and elevated fibrinogen (>2.61 g/L) were defined as a score of 3, if none of the patients’ three parameters met these standards they were given a score of 0, if any two or one parameter met these standards they were scored as 2 or 1, respectively. The correlation between F-NLR-AGR score and glioma grade was also evaluated.ResultsThe three-year overall survival (OS) rate and the mean overall survival in patients with F-NLR-AGR=3 were lower than those of patients with F-NLR-AGR = 2, 1 or 0 [17.6% vs 35.2%, 66.9% or 83.7% (26.0 vs 39.0, 64.0 or 81.0 months), P<0.001]. Multivariate analysis revealed that age (HR=2.071; 95% CI=1.195–3.588; P=0.009), WHO grade (P<0.001), and F-NLR-AGR score (P<0.001) were independent prognostic factors for OS. Spearman’s rank correlation analysis revealed that F-NLR-AGR score was positively correlated with glioma grade (r=0.278, P<0.01).ConclusionPreoperative F-NLR-AGR score was correlated with glioma grading, high F-NLR-AGR score was an independent predictor of poor prognosis in glioma. Therefore, the scoring system may be applied in clinical practice to identify high-risk patients.
Purpose: Eosinophils are proven to play a role in the prognosis of some malignant-tumors. The prognostic value of eosinophils in glioma patients is, however, scarcely reported. The authors of this article have designed a novel prognostic indicator based on eosinophils and the neutrophil-to-lymphocyte ratio (NLR), named ENS, to predict the survival of patients with glioma. Methods: A retrospective study was conducted on 217 glioma patients. The cutoff values for eosinophil, NLR, and other clinical variables were determined by the receiver operating characteristic (ROC) curve analysis. Patients with both low eosinophil count (<0.08 ×10 9 /L) and high NLR (≥1.70) were given a score of 2. Those with one or neither got a score of 1 or 0, respectively. The nomogram was based on ENS and several other clinical variables, its performance was determined by the concordance index (c-index). Results: Our results showed that ENS is an independent prognostic indicator for overall survival (OS). The three-year OS rates for low-grade glioma patients (LGGs) were 84.0%, 69.0%, and 46.4% for ENS=0, ENS=1, and ENS=2, respectively (P=0.014). The three-year OS incidence for LGGs stratified into eosinophils count ≥0.08×109/L and<0.08×109/L subgroups were 88.1% and 80.0%, respectively (P=0.043). ENS was positively correlated with glioma grade (r=0.311, P<0.001). The c-index for OS prognosis was 0.80 using this nomogram in LGGs. Conclusion: Preoperative ENS can predict OS to some extent for LGGs and can increase prognostic accuracy for individual OS in LGGs postoperatively when incorporating other clinical variables compose a nomogram.
Deep brain stimulation (DBS) modulates the neuronal activity in specific brain circuits and has been recently considered as a promising intervention for refractory addiction. The insula cortex is the hub of interoception and is known to be involved in different aspects of substance use disorder. In the present study, we investigate the effects of continuous high frequency DBS in the anterior insula (AI) on drug-seeking behaviors and examined the molecular mechanisms of DBS action in morphine-addicted rats. Sprague-Dawley rats were trained to the morphine-conditioned place preference (CPP, day 1–8) followed by bilaterally implanted with DBS electrodes in the AI (Day 10) and recovery (Day 10–15). Continuous high-frequency (HF) -DBS (130 Hz, 150 μA, 90 μs) was applied during withdrawal (Day 16–30) or extinction sessions. CPP tests were conducted on days 16, 30, 40 during withdrawal session and several rats were used for proteomic analysis on day 30. Following the complete extinction, morphine-CPP was reinstated by a priming dose of morphine infusion (2 mg/kg). The open field and novel objective recognition tests were also performed to evaluate the DBS side effect on the locomotion and recognition memory. Continuous HF-DBS in the AI attenuated the expression of morphine-CPP post-withdrawal (Day 30), but morphine addictive behavior relapsed 10 days after the cessation of DBS (Day 40). Continuous HF-DBS reduced the period to full extinction of morphine-CPP and blocked morphine priming-induced recurrence of morphine addiction. HF-DBS in the AI had no obvious effect on the locomotor activity and novel objective recognition and did not cause anxiety-like behavior. In addition, our proteomic analysis identified eight morphine-regulated proteins in the AI and their expression levels were reversely changed by HF-DBS. Continuous HF-DBS in the bilateral anterior insula prevents the relapse of morphine place preference after withdrawal, facilitates its extinction, blocks the reinstatement induced by morphine priming and reverses the expression of morphine-regulated proteins. Our findings suggest that manipulation of insular activity by DBS could be a potential intervention to treat substance use disorder, although future research is warranted.
Background Lower-grade gliomas (LGG) are the prevalent primary intracerebral malignancy tumor. Increasing evidence indicated an association between immune signature and LGG prognosis. Thus, we aim to develop an immune-related gene pairs (IRGPs) signature that can predict prognosis for LGG. Method: Gene expression levels and clinical information of LGG patients (LGGs) were collected from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The two databases were divided into training cohort (n = 515) and an independent validation cohort (n = 604). IGRPs significantly associated with prognosis were selected by Cox regression. Gene set enrichment analysis and filtration were performed on IGRPs. Results Within 1991 immune genes, an 8 IRGPs signature including 15 unique genes was constructed, which had a significant association with survival. In the validation dataset, the IRGPs signature significantly stratified LGGs into low- and high-risk groups (P < 0.001), and it remained an independent prognostic factor in univariate and multivariate analyses (P < 0.001). Additionally, 26 functional pathways were filtrated through the intersection of Gene set enrichment analysis (GSEA) and gene ontology (GO) enrichment analysis. Conclusion The IGRPs signature demonstrated good prognostic value in lower-grade glioma, which may provide new insights into individual treatment for glioma patients. And the IGRPs might take effect through these filtrated 26 functional pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.