The treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days). Meantime, the motion ability of nanomotors under NIR irradiation can effectively promote them to penetrate deeply in thrombus site to enhance retention ratio. The in vitro and in vivo evaluation results confirm that the synergistic effect of targeting ability from PM and motion ability from nanomotors can notably enhance the thrombolysis effect in both static/dynamic thrombus and rat model.
The development of water-soluble nanostructured magnetic nanocomposites based on hydrophobic magnetic nanoparticle assemblies using an organic functional coating for MRI contrast agent applications was discussed.
Limited tumor permeability of therapeutic agents is a great challenge faced by current cancer therapy methods. Herein, a kind of near infrared light (NIR)‐driven nanomotor with autonomous movement, targeted ability, hierarchical porous structure, multi‐drugs for cancer chemo/photothermal therapy is designed, prepared and characterized. Further, we establish a method to study the interaction between nanomotors and cells, along with their tumor permeability mechanism, including 2D cellular models, 3D multicellular tumor spheroids and in vivo models. In vivo tumor elimination results verify that the movement behaviour of the nanomotors can greatly facilitate them to eliminate tumor through multiple therapeutic methods. This work tries to establish systematic research and evaluation models, providing strategies to understand the relationship between motion behaviour and tumor permeation efficiency of nanomotors in depth.
Reductive soil disinfestation (RSD) has been proven to be an effective and environmentally friendly way to control many soilborne pathogens and diseases. In this study, the RSDs using ethanol (Et-RSD) and alfalfa (Al-RSD) as organic carbons were performed in a Rhizoctonia solani-infected soil, and the dissimilarities of microbial communities during the RSDs and after planting two seasons of cucumber seedlings in the RSDs-treated soil were respectively investigated by MiSeq pyrosequencing. The results showed that, as for bacteria, Coprococcus, Flavisolibacter, Rhodanobacter, Symbiobacterium, and UC-Ruminococcaceae became the dominant bacterial genera at the end of Al-RSD. In contrast, Et-RSD soil involved more bacteria belonging to Firmicutes, such as Sedimentibacter, UC-Gracilibacteraceae, and Desulfosporosinus. For fungi, Chaetomium significantly increased at the end of RSDs, while Rhizoctonia and Aspergillus significantly decreased. After planting two seasons of cucumber seedlings, those bacteria belonging to Firmicutes significantly decreased, but Lysobacter and Rhodanobacter belonging to the phylum Proteobacteria as well as UC-Sordariales and Humicola belonging to Ascomycota alternatively increased in Al- and Et-RSD-treated soils. Besides, some nitrification, denitrification, and nitrogen fixation genes were apparently increased in the RSD-treated soils, but the effect was more profound in Al-RSD than Et-RSD. Overall, Et-RSD could induced more antagonists belonging to Firmicutes under anaerobic condition, whereas Al-RSD could continuously stimulate some functional microorganisms (Lysobacter and Rhodanobacter) and further improve nitrogen transformation activities in the soil at the coming cropping season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.