Ovarian cancer’s poor progression is closely associated with overexpression of matrix metalloproteinase 9 (MMP-9), which belongs to the class of enzymes believed to be involved in the degradation of extracellular matrix. However, the mechanisms underlying regulation of MMP-9 are not completely understood. STAT (signal transducer and activator of transcription) family of transcription factors is well known to be engaged in diverse cellular functions. Activation of STAT3 has been observed in a number of cancers, promoting tumorigenesis and metastasis via transcriptional activation of its target genes. In this study, we tested our hypothesis that STAT3 regulates MMP-9 gene expression in epithelial ovarian cancer. Using epithelial ovarian cancer cell lines as in vitro model, we show an abundance of phosphorylated STAT3 at Tyr705 (p-STAT3) in SKOV3 cell line. We further show that MMP-9 gene promoter was significantly enriched by p-STAT3, and IL-6 treatment led to a significant increase of MMP-9 at mRNA and protein levels, in addition to an association of p-STAT3 with MMP-9 gene. By using luciferase reporter assay, we determined that the STAT3 DNA responsive element of MMP-9 was sufficient to regulate transcriptional activity of a heterologous promoter. These results suggest that the phosphorylation of STAT3 regulates MMP-9 production in ovarian cancer, which might be responsible for its invasiveness and metastasis.
Prostate cancer is the most common cancer in men by way of diagnosis and a leading cause of cancer-related deaths. Early detection and intervention remains key to its optimum clinical management. This review provides the most updated information on the recent methods of prostate cancer screening, imaging and treatment modalities. Wherever possible, clinical trial data has been supplemented to provide a comprehensive overview of current prostate cancer research and development. Considering the recent success of immunotherapy in prostate cancer, we discuss cell, DNA and viruses based, as well as combinatorial immunotherapeutic strategies in detail. Furthermore, the potential of nanotechnology is increasingly being realized, especially in prostate cancer research, and we provide an overview of nanotechnology-based strategies, with special emphasis on nanotheranostics and multifunctional nanoconstructs. Understanding these recent developments is critical to the design of future therapeutic strategies to counter prostate cancer.
Epidemiological studies have shown that elevated concentrations of particulate matter 2.5 (PM2.5) correlate with increased incidence of asthma. Studies have highlighted the implication of microRNAs (miRNAs) in asthmatic response. Here, the objective of this study is to explore the effect of miR‐224 on PM2.5‐induced asthmatic mice. Ovalbumin (OVA) was utilized to establish asthmatic mouse models, which were then exposed to PM2.5, followed by miR‐224 expression detection. Next, lesions and collagen deposition area in lung tissue, ratio Treg/Th17, the expression of TLR4 and MYD88, inflammation, eosinophils (EOS) and airway remodelling were evaluated in OVA mice after injection with miR‐224 agomir. Following isolation of mouse primary bronchial epithelial cells, miR‐224 mimic and TLR2/TLR4 inhibitor were introduced to assess inflammation and the expression of TGF‐β, MMP9, TIMP‐1, Foxp3, RORγt, TLR2, TLR4 and MYD88. After exposure to PM2.5, lesions and collagen deposition were promoted in lung tissues, inflammation and EOS were increased in bronchoalveolar lavage fluid (BALF), and airway remodelling was enhanced in OVA mice. miR‐224 was down‐regulated, whereas TLR2/TLR4/MYD88 was up‐regulated in OVA mice after treatment with PM2.5, accompanied by Treg/Th17 immune imbalance. Of note, bioinformatic prediction and dual luciferase reporter gene assay confirmed that TLR2 was a target gene of miR‐224. Overexpressed miR‐224 reduced expression of TGF‐β, MMP9, TIMP‐1 and RORγt and inflammation but increased Foxp3 expression in bronchial epithelial cells through down‐regulating TLR2. In summary, overexpressed miR‐224 suppressed airway epithelial cell inflammation and airway remodelling in PM2.5‐induced asthmatic mice through decreasing TLR2 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.