Au NPL@TiO2 nanostructures play the dual role of heat- and ROS-generating agents, which lead to synergetic photothermal/sonodynamic therapy in the second biological window.
Photodynamic therapy (PDT) agent, which generates singlet oxygen (1O2) under light, has attracted significant attention for its broad biological and medical applications. Here, DNA‐driven shell–satellite (SS) gold assemblies as chiral photosensitizers are first fabricated. The chiral plasmonic nanostructure, coupling with cysteine enantiomers on its surface, exhibits intense chiroplasmonic activities (−40.2 ± 2.6 mdeg) in the visible region. These chiral SS nanoassemblies have high reactive oxygen species generating efficiency under circular polarized light illumination, resulting in a 1O2 quantum yield of 1.09. Meanwhile, it is found that SS could be utilized as PDT agent with remarkable efficiency under right circular polarized light irradiation in vitro and in vivo, allowing X‐ray computed tomography (CT) and photoacoustics (PA) imaging for tumors simultaneously. The achievements reveal that the enantiomer‐dependent and structure‐induced nanoassemblies play an important role in PDT effects. The present researches open up a new avenue for cancer diagnose and therapy using chiral nanostructures as multifunctional platform.
We propose a novel method for object reconstruction of ghost imaging based on Pseudo-Inverse, where the original objects are reconstructed by computing the pseudo-inverse of the matrix constituted by the row vectors of each speckle field. We conduct reconstructions for binary images and gray-scale images. With equal number of measurements, our method presents a satisfying performance on enhancing Peak Signal to Noise Ratio (PSNR) and reducing computing time. Being compared with the other existing methods, its PSNR distinctly exceeds that of the traditional Ghost Imaging (GI) and Differential Ghost Imaging (DGI). In comparison with the Compressive-sensing Ghost Imaging (CGI), the computing time is substantially shortened, and in regard to PSNR our method exceeds CGI on grayscale images and performs as well as CGI visually on binary images. The influence of both the detection noise and the accuracy of measurement matrix on PSNR are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.