We present two different approaches to apply deep learning to inverse design for nanophotonic devices. First, we use a regression model, with device parameters as inputs and device responses as outputs, or vice versa. Second, we use a novel generative model to create a series of improved designs. We demonstrate them to design nanophotonic power splitters with multiple splitting ratios.
We present three different approaches to apply deep learning to inverse design for nanophotonic devices. The forward and inverse regression models use device parameters as inputs and device responses as outputs, and vice versa. The generative model to create a series of improved designs. We demonstrate them to design nanophotonic power splitters with multiple splitting ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.