Iron-modified raw kaolinite clay (Fe-MC) was synthesized by co-precipitation method, characterized, and then applied as a low-cost adsorbent to sequester sulfachloropyridazine (SCP) and sulfadimethoxine (SDM), emergent water contaminants, from aqueous media by batch equilibration at circumneutral pH. The adsorption rate was kinetically described by the pseudosecond-order model. Equilibrium monocomponent sorption data were fitted to three two-parameter linear and nonlinear isotherm models. The data were best described by Temkin and Langmuir nonlinear equations. Linearization of adsorption isotherms is demonstrated to be an unsuitable analytical tool for predicting adsorption isotherms. The Langmuir monolayer maximum adsorption capacities were 4.561 and 1.789 mg/g for SCP and SDM, respectively. The binary adsorption study showed an antagonistic adsorption process of SCP (R q, SCP = 0.625) in the presence of SDM (R q, SDM = 1.032). The thermodynamic parameters, namely enthalpy (ΔH), Gibbs free energy (ΔG), entropy (ΔS), Arrhenius activation energy (ΔE a), and sticking probability (S *), indicated that the processes are spontaneous, exothermic, and physical in nature. The adsorption process was attributed to hydrogen bonding and negative charge-assisted H-bonding (CAHB). Using the Langmuir isotherm, the amount of Fe-MC required for a given volume of effluent of known contaminant concentration could be predicted.
In this study, a well-studied synthetic faujasite X (FAU-X) zeolite and a recently discovered natural zeolite material from Kenya (NZ-K) were compared for their efficiency in removal of clomazone, a herbicide and water contaminant, from aqueous solution. The adsorption kinetics, isotherms and thermodynamics parameters were investigated. Equilibrium sorption data were describable by both the Langmuir and Freundlich models. The adsorption kinetics obeyed the pseudo-second-order kinetic law while pore diffusion was not the sole operating rate determining step. The derived thermodynamic parameters, namely DG and DH, indicated the adsorption process was feasible, spontaneous and exothermic for the natural zeolite and non-spontaneous for the synthetic zeolite via a physical and chemical process, respectively. The natural zeolite proved to be a suitable low-cost adsorbent for clomazone removal with removal efficiency above 70 %, five-fold more efficient than faujasite X. KEYWORDS Adsorption, natural zeolite, faujasite X, clomazone.
Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.