Background Spatio-temporal patterns of movement can characterize relationships between organisms and their surroundings, and address gaps in our understanding of species ecology, activity budgets, bioenergetics, and habitat resource management. Highly mobile waterfowl, which can exploit resources over large spatial extents, are excellent models to understand relationships between movements and resource usage, landscape interactions and specific habitat needs. Methods We tracked 3 species of dabbling ducks with GPS-GSM transmitters in 2015–17 to examine fine-scale movement patterns over 24 h periods (30 min interval), dividing movement pathways into temporally continuous segments and spatially contiguous patches. We quantified distances moved, area used and time allocated across the day, using linear and generalized linear mixed models. We investigated behavior through relationships between these variables. Results Movements and space-use were small, and varied by species, sex and season. Gadwall ( Mareca strepera ) generally moved least (FFDs: 0.5–0.7 km), but their larger foraging patches resulted from longer within-area movements. Pintails ( Anas acuta ) moved most, were more likely to conduct flights > 300 m, had FFDs of 0.8–1.1 km, used more segments and patches per day that they revisited more frequently, resulting in the longest daily total movements. Females and males differed only during the post-hunt season when females moved more. 23.6% of track segments were short duration (1–2 locations), approximately 1/3 more than would be expected if they occurred randomly, and were more dispersed in the landscape than longer segments. Distance moved in 30 min shortened as segment duration increased, likely reflecting phases of non-movement captured within segments. Conclusions Pacific Flyway ducks spend the majority of time using smaller foraging and resting areas than expected or previously reported, implying that foraging areas may be highly localized, and nutrients obtainable from smaller areas. Additionally, movement reductions over time demonstrates behavioral adjustments that represent divergent energetic demands, the detection of which is a key advantage of higher frequency data. Ducks likely use less energy for movement than currently predicted and management, including distribution and configuration of essential habitat, may require reconsideration. Our study illustrates how fine-scale movement data from tracking help understand and inform various other fields of research. Electronic supplementary material The online version of this article (10.1186/s40462-019-0146-8) contains supplementary material, which is available to authorized users.
Foraging with tuna is a well-documented seabird strategy, referred to as facilitated foraging. However, despite this behaviour being considered almost obligatory in nutrient-poor tropical waters, little data exist on its relative importance to individual colonies. Therefore, to examine facilitated foraging under different patterns of nutrient availability, we tracked wedgetailed shearwaters Ardenna pacifica from 2 colonies, one tropical and one subtropical, situated in waters of contrasting productivity. Shearwater foraging behaviour was assessed relative to oceanographic covariates and predicted distributions for multiple tropical tuna species and ageclasses, simulated by an existing ecosystem model (SEAPODYM). Shearwaters from both colonies undertook long trips to deep, pelagic waters close to seamounts and foraged most often at fronts and eddies. Micronektonic and adult tuna age classes were highly correlated in space. Predation between these tuna age classes represents a likely source of facilitated foraging opportunities for shearwaters. At broad spatial scales, shearwaters consistently foraged in areas with higher predicted adult skipjack and micronektonic tuna densities and avoided adult bigeye tuna. At finer spatial scales, dynamic ocean features aggregated tuna of all sizes. Enhanced tuna density at these locations increased the likelihood of shearwater foraging activity. Long trips in the tropics targeted oligotrophic waters with higher tuna densities. Long trips in the subtropics targeted enhanced productivity, but in some years shifted to target the same oligotrophic, tuna-dense waters used by tropical conspecifics. We conclude that facilitated foraging with tuna is consistently important to the tropical breeding population and becomes increasingly important to the subtropical population in years of low marine productivity.
The wedge-tailed shearwater (WTS) population of New Caledonia is one of the largest in the world, yet its biology and foraging ecology are poorly known. We studied WTS from 4 colonies in New Caledonia. We examined foraging behaviour and habitats using GPS receivers and light sensors during and outside the breeding season, respectively, and compared our findings with those from other WTS populations worldwide. During breeding, New Caledonian WTS alternated short foraging trips close to the colony over the lagoon, or off the reef edge, with longer trips over distant, deep waters. Whereas neighboring colonies overlapped at sea, especially during short trips, there was a clear separation of foraging zones between the pairs of colonies located in the southern versus northwestern parts of New Caledonia. Although WTS actively foraged and commuted to foraging zones during the day, they mainly returned to the colony or rested at night, indicating that they feed mainly during the day. Active foraging did not take place in more productive areas, suggesting that it may instead be related to the presence of sub-surface predators. Outside the breeding season, birds from 3 colonies had similar trans-equatorial migratory behaviour. All left New Caledonia at the same time of the year with a fast, northeasterly movement and wintered over deep waters in the same sector of the northwestern tropical Pacific Ocean. At overwintering sites, they spent most of their non-foraging time presumably sitting on the water, especially at night, making a slow westward movement before returning to New Caledonia. WTS from New Caledonia forage over warm, oligotrophic deep waters throughout their life cycle, and the species appears to have a flexible foraging strategy adapted to the various environmental conditions encountered across its wide tropical range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.