Let R commutative ring with multiplicative identity, and M is an R-module. An ideal I of R is irreducible if the intersection of every two ideals of R equals I, then one of them is I itself. Module theory is also known as an irreducible submodule, from the concept of an irreducible ideal in the ring. The set of R - module homomorphisms from M to itself is denoted by EndR(M). It is called a module endomorphism M of ring R. The set EndR(M) is also a ring with an addition operation and composition function. This paper showed the sufficient condition of an irreducible ideal on the ring of EndR(R) and EndR(M)
A seminear-ring is a generalization of ring. In ring theory, if is a ring with the multiplicative identity, then the endomorphism module is isomorphic to . Let be a seminear-ring. Here, we can construct the set of endomorphism from to itself denoted by . We show that if is a seminear-ring, then is also a seminear-ring over addition and composition function. We will apply the congruence relation to get the quotient seminear-ring endomorphism. Furthermore, we show the relation between c-ideal and congruence relations. So, we can construct the quotient seminear-ring endomorphism with a c-ideal.
Abstrak. Himpunan tak kosong yang dilengkapi suatu operasi biner yang bersifat asosiatif disebut semigrup. Setiap semigrup yang memuat elemen identitas didalamnya disebut monoid. Selanjutnya, grup adalah sebuah monoid dimana setiap elemennya mempunyai elemen invers. Setiap grup yang memenuhi sifat komutatif disebut grup komutatif. Ring (R,+,.) didefinisikan sebagai himpunan tak kosong yang dilengkapi dengan dua operasi biner yaitu penjumlahan dan pergandaan serta memenuhi beberapa aksioma tertentu diantaranya (R,+) adalah grup komutatif, (R,.) semigrup dan (R,+,.) memenuhi hukum distributif kiri beserta distributif kanan Struktur aljabar semiring merupakan generalisasi dari ring dengan mengurangi keberadaanelemen invers pada operasi penjumlahan. Semiring disebut semiring komutatif asalkanoperasi pergandaan pada semiring bersifat komutatif. Ideal pada semiring didefinisikan dengan cara yang sejalan dengan ideal pada ring. Suatu ideal pada sebuah semiring dikatakan tak tereduksi jika ideal adalah hasil irisan antara ideal A dan B maka I=A atau I=B dan suatu ideal pada sebuah semiring dikatakan tak tereduksi kuat jika ideal adalah himpunan bagian dari hasil irisan antara ideal A dan B maka I=A atau I=B. Pada paper ini diperoleh hasil, setiap ideal tak tereduksi kuat merupakan ideal tak tereduksi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.