Please cite this article as: Bieczynski, F., De Anna, J.S., Pirez, M., Brena, B.M., Villanueva, S.S.M., Luquet, C.M.,Cellular transport of microcystin-LR in rainbow trout (Oncorhynchus mykiss) across the intestinal wall: possible involvement of multidrug resistance-associated proteins, Aquatic Toxicology (2014), http://dx.doi.org/10. 1016/j.aquatox.2014.05.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
We studied accumulation and biochemical effects of microcystin-LR (MCLR) in Odontesthes hatcheri after dietary administration of the cyanobacteria Microcystis aeruginosa (1.3 μg MCLR/g body mass, incorporated in standard fish food). After 12 h, MCLR content in liver did not differ between fish fed with crushed or intact cells, demonstrating O. hatcheri's capacity to digest cyanobacteria and absorb MCLR. In the second experiment, fish received toxic cells, non-toxic cells, or control food; MCLR accumulation was monitored for 48 h. Protein phosphatase 1 (PP1), catalase (CAT), glutathione-S-transferase (GST) activities, and lipid peroxidation (as MDA) were measured in liver and intestine. Methanol-extractable MCLR was determined by PP1 inhibition assay (PPIA); extractable and protein-bound MCLR were measured by Lemieux oxidation-gas chromatography/mass spectrometry (GC/MS). MCLR accumulated rapidly up to 22.9 and 9.4 μg MCLR/g in intestine and liver, respectively, followed by a decreasing tendency. Protein-bound MCLR represented 66 to ca. 100 % of total MCLR in both tissues. PP1 activity remained unchanged in intestine but was increased in liver of MCLR treated fish.CAT and GST activities and MDA content were significantly increased by MCLR only in liver. We conclude that O. hatcheri is able to digest cyanobacteria, accumulating MCLR mostly bound to proteins. Our data suggest that this freshwater fish can be adversely affected by cyanobacterial blooms. However, the rapid decrease of the detectable MCLR in both tissues could imply that sublethal toxin accumulation is rapidly reversed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.