Glutathione S-transferases (GSTs) are a superfamily of detoxificant enzymes. Pharmacogenomic studies have revealed interethnic differences in GST allelic frequencies. This study is focused on GSTT1 (gene deletion, rs17850155, rs2234953, and rs11550605) and GSTM1 (gene deletion) gene frequency distributions in two population samples of Europe origin (Italy, n = 120; Spain, n = 94) and two population samples of Africa origin (Cameroon, n = 126; Ethiopia, n = 153). Detection of GSTT1 and GSTM1 null genotypes was performed by multiplex PCR analysis, while the other GSTT1 gene polymorphisms were detected using allele specific PCR and sequencing. GSTT1 and GSTM1 null frequencies in the samples analyzed fit with the variability range observed in European and African populations, respectively. The SNP analysis in GSTT1 gene did not highlight any nucleotide substitution in 493 individuals analyzed. The comparisons among GSTM1 and GSTT1 null phenotype frequencies in worldwide populations show different patterns between Asians, Africans, and Europeans. Important insights into the effects of GSTM1 and GSTT1 gene deletions on the pathogenesis of human diseases have been hypothesized. Detailed studies on the geography of GST variants could therefore increase knowledge about the relationship between ethnicity and the prevalence of certain diseases.
Glutathione S-transferases are a superfamily of enzymes that are involved in biotransformation of drugs, xenobiotics and play a fundamental role in the protection of cells from oxidative stress. In humans, the recently described GST Omega class contains two expressed genes GSTO1 and GSTO2, located on chromosome 10 (10q24.3). Four polymorphisms in GSTO genes have been identified in ethnic groups: GSTO1*A140D (rs4925), GSTO1*E155del (rs56204475), GSTO1*E208K (rs11509438) and GSTO2*N142D (rs156697). This study provides the allele frequencies of GSTO polymorphism in a sample consisting of 116 apparently healthy individuals of both sexes from Rome (Central Italy). Detection of GSTO1*A140D and GSTO2*N142D alleles was performed by PCR-RFLP analysis, while GSTO1*E155del and GSTO1*E208K alleles were detected using the Confronting Two-Pair Primers analysis (PCR-CTPP) and allele specific PCR, respectively. The GSTO allele frequencies found in the Italian sample were included in the variability range observed in European populations. Comparison between the data presented in this study and data in previous studies showed different patterns among European, Asian and African populations.
Glutathione S-transferase (GST) isozymes catalyze nucleophilic attack by reduced Glutathione (GSH) on a variety of electrophilic compounds and play a central role in biotransformation of xenobiotics (Hayes et al., Annu Rev Pharmacol Toxicol 45:51-88, 2005). We performed a case-control study to evaluate the GSTM1 and GSTT1 polymorphisms and to investigate if exposure to pesticides conditions the GSTT1 activity level in 115 healthy controls and 90 farm-workers exposed to pesticides. Polymorphisms were investigated using a GSTM1 or a GSTT1-specific PCR. Enzyme activity was measured by means of DCM as co-substrate, as described by Bruhn et al. (Biochem Pharmacol 56:1189-1193, 1998). There was no significant difference between the farm-workers and the healthy controls regarding the distribution of various alleles of the GSTM1 and GSTT1 genes and the GSTT1 enzyme activity. In farm-workers, the GSTM1 null genotype was associated with a significant increase of GSTT1 activity, suggesting a regulative mechanism common to GSTM1 and GSTT1 enzymes after exposure to xenobiotics.
The association between Gc polymorphism and ETU urinary concentration of subjects exposed to EBDCs could be due to the immunological function of Gc and the effects on the immune system of EBDCs.
Genetic Creutzfeldt–Jakob disease (gCJD) associated with the V180I mutation in the prion protein (PrP) gene (PRNP) in phase with residue 129M is the most frequent cause of gCJD in East Asia, whereas it is quite uncommon in Caucasians. We report on a gCJD patient with the rare V180I-129V haplotype, showing an unusually long duration of the disease and a characteristic pathological PrP (PrPSc) glycotype. Family members carrying the mutation were fully asymptomatic, as commonly observed with this mutation. Neuropathological examination showed a lesion pattern corresponding to that commonly reported in Japanese V180I cases with vacuolization and gliosis of the cerebral cortexes, olfactory areas, hippocampus and amygdala. PrP was deposited with a punctate, synaptic-like pattern in the cerebral cortex, amygdala and olfactory tract. Western blot analyses of proteinase-K-resistant PrP showed the characteristic two-banding pattern of V180I gCJD, composed of mono- and un-glycosylated isoforms. In line with reports on other V180I cases in the literature, Real-Time Quaking Induced Conversion (RT-QuIC) analyses did not demonstrate the presence of seeding activity in the cerebrospinal fluid and olfactory mucosa, suggesting that this haplotype also may result in a reduced seeding efficiency of the pathological PrP. Further studies are required to understand the origin, penetrance, disease phenotype and transmissibility of 180I-129V haplotype in Caucasians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.